Nonlinear thermal instability in two dimensions

被引:7
|
作者
Steele, CDC [1 ]
Ibáñez, MH
机构
[1] Univ Manchester, Inst Sci & Technol, Dept Math, Manchester M60 1QD, Lancs, England
[2] Univ Los Andes, Fac Ciencias, Ctr Astrophys Teor, Merida, Venezuela
关键词
D O I
10.1063/1.873597
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Nonlinear thermal disturbances are analyzed for a two-dimensional structure taking into account thermal conduction parallel to and perpendicular to the magnetic field, as well as heating and cooling effects. In general, small structures are linearly stable while larger ones are unstable. Heat conduction perpendicular to the field has a stabilizing effect and increases the maximum stable size of a structure. In many cases, the second-order growth rate is positive (enhancing heating but preventing cooling) for very large structures and is negative (opposite effect) otherwise. The perpendicular conduction causes a negative correction other than for the largest structures. This perpendicular conduction is particularly important for structures in the marginal linear state; strong cooling occurs in the absence of perpendicular conduction but if such conduction is included and is strong enough, catastrophic heating may occur. Perpendicular heat conduction is found to be most significant in long, thin, cool structures. (C) 1999 American Institute of Physics. [S1070-664X(99)02108-4].
引用
收藏
页码:3086 / 3096
页数:11
相关论文
共 50 条
  • [31] Nonlinear electrohydrodynamic instability of two liquid layers
    Elhefnawy, ARF
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2002, 40 (03) : 319 - 332
  • [32] Nonlinear instability of two dielectric viscoelastic fluids
    Moatimid, GM
    CANADIAN JOURNAL OF PHYSICS, 2004, 82 (12) : 1109 - 1133
  • [33] Parametric instability of two coupled nonlinear oscillators
    Denardo, B
    Earwood, J
    Sazonova, V
    AMERICAN JOURNAL OF PHYSICS, 1999, 67 (03) : 187 - 195
  • [34] Nonlinear Instability of Two Superposed Electrified Bounded Fluids Streaming Through Porous Medium in (2+1) Dimensions
    El-Sayed, M. F.
    Moatimid, G. M.
    Metwaly, T. M. N.
    JOURNAL OF POROUS MEDIA, 2009, 12 (12) : 1153 - 1179
  • [35] The massless thermal field and the thermal fermion bosonization in two dimensions
    Akhmedov, E.
    Epstein, H.
    Moschella, U.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [36] The massless thermal field and the thermal fermion bosonization in two dimensions
    E. Akhmedov
    H. Epstein
    U. Moschella
    Journal of High Energy Physics, 2022
  • [37] On the miscible Rayleigh-Taylor instability: two and three dimensions
    Young, YN
    Tufo, H
    Dubey, A
    Rosner, R
    JOURNAL OF FLUID MECHANICS, 2001, 447 : 377 - 408
  • [38] Evolution of the electron cyclotron drift instability in two-dimensions
    Janhunen, Salomon
    Smolyakov, Andrei
    Sydorenko, Dmytro
    Jimenez, Marilyn
    Kaganovich, Igor
    Raitses, Yevgeny
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [39] Thermal evolution of neutron stars in two dimensions
    Negreiros, Rodrigo
    Schramm, Stefan
    Weber, Fridolin
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [40] Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability
    Zavershinskii, D., I
    Molevich, N. E.
    Riashchikov, S.
    Belov, S. A.
    PHYSICAL REVIEW E, 2020, 101 (04)