SUFFICIENT DIMENSION REDUCTION IN REGRESSIONS WITH MISSING PREDICTORS

被引:10
|
作者
Zhu, Liping [1 ,2 ]
Wang, Tao [3 ]
Zhu, Lixing [3 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Minist Educ, Shanghai 200433, Peoples R China
[2] Shanghai Univ Finance & Econ, Key Lab Math Econ, Minist Educ, Shanghai 200433, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Central subspace; missing at random; missing predictors; nonparametric imputation; sliced inverse regression; sufficient dimension reduction; SLICED INVERSE REGRESSION; EMPIRICAL LIKELIHOOD; ASYMPTOTICS; INFERENCE;
D O I
10.5705/ss.2009.191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Existing sufficient dimension reduction methods often resort to the complete-case analysis when the predictors are subject to rnissingness. The complete-case analysis is inefficient even with the missing completely at random mechanism because all incomplete cases are discarded. In this paper, we introduce a nonparametric imputation procedure for semiparametric regressions with missing predictors. We establish the consistency of the nonparametric imputation under the missing at random mechanism that allows the missingness to depend exclusively upon the completely observed response. When the missingness depends on both the completely observed predictors and the response, we propose a parametric method to impute the missing predictors. We demonstrate the estimation consistency of the parametric imputation method through several synthetic examples. Our proposals are illustrated through comprehensive simulations and a data application.
引用
收藏
页码:1611 / 1637
页数:27
相关论文
共 50 条
  • [21] DIMENSION REDUCTION FOR CONDITIONAL VARIANCE IN REGRESSIONS
    Zhu, Li-Ping
    Zhu, Li-Xing
    [J]. STATISTICA SINICA, 2009, 19 (02) : 869 - 883
  • [22] Sufficient Reductions in Regressions With Exponential Family Inverse Predictors
    Bura, Efstathia
    Duarte, Sabrina
    Forzani, Liliana
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1313 - 1329
  • [23] Sufficient Reductions in Regressions With Elliptically Contoured Inverse Predictors
    Bura, Efstathia
    Forzani, Liliana
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 420 - 434
  • [24] Tensor sufficient dimension reduction
    Zhong, Wenxuan
    Xing, Xin
    Suslick, Kenneth
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (03): : 178 - 184
  • [25] A note on sufficient dimension reduction
    Wen, Xuerong Meggie
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (08) : 817 - 821
  • [26] Transformed sufficient dimension reduction
    Wang, T.
    Guo, X.
    Zhu, L.
    Xu, P.
    [J]. BIOMETRIKA, 2014, 101 (04) : 815 - 829
  • [27] Sparse sufficient dimension reduction
    Li, Lexin
    [J]. BIOMETRIKA, 2007, 94 (03) : 603 - 613
  • [28] Advance of the sufficient dimension reduction
    Hang, Weiqiang
    Xia, Yingcun
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (03)
  • [29] SURROGATE DIMENSION REDUCTION IN MEASUREMENT ERROR REGRESSIONS
    Zhang, Jun
    Zhu, Liping
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1341 - 1363
  • [30] Sufficient dimension reduction and variable selection for regression mean function with two types of predictors
    Wang, Qin
    Yin, Xiangrong
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2798 - 2803