Fast Maximal Cliques Enumeration in Sparse Graphs

被引:39
|
作者
Chang, Lijun [1 ]
Yu, Jeffrey Xu [1 ]
Qin, Lu [1 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
Maximal clique; Polynomial delay; Sparse graph; H-Partition; H-Value; ALGORITHM;
D O I
10.1007/s00453-012-9632-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we consider the problem of generating all maximal cliques in a sparse graph in polynomial delay. Given a graph G=(V,E) with n vertices and m edges, the latest and fastest polynomial delay algorithm for sparse graphs enumerates all maximal cliques in O(Delta (4)) time delay, where Delta is the maximum degree of vertices. However, it requires an O(na <...m) preprocessing time. We improve it in two aspects. First, our algorithm does not need preprocessing. Therefore, our algorithm is a truly polynomial delay algorithm. Second, our algorithm enumerates all maximal cliques in O(Delta a <...H (3)) time delay, where H is the so called H-value of a graph or equivalently it is the smallest integer satisfying |{vaVa pound delta(v)a parts per thousand yenH}|a parts per thousand currency signH given delta(v) as the degree of a vertex. In real-world network data, H usually is a small value and much smaller than Delta.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 50 条
  • [31] Fast Maximal Clique Enumeration on Uncertain Graphs: A Pivot-based Approach
    Dai, Qiangqiang
    Li, Rong-Hua
    Liao, Meihao
    Chen, Hongzhi
    Wang, Guoren
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 2034 - 2047
  • [32] GENERALIZATIONS OF GRILLET THEOREM ON MAXIMAL STABLE SETS AND MAXIMAL CLIQUES IN GRAPHS
    ZANG, WA
    DISCRETE MATHEMATICS, 1995, 143 (1-3) : 259 - 268
  • [33] Knapsack Intersection Graphs and Efficient Computation of Their Maximal Cliques
    Brimkov, Valentin E.
    Computational Modeling of Objects Presented in Images: Fundamentals, Methods, and Applications, 2014, 8641 : 176 - 187
  • [34] On Effectively Finding Maximal Quasi-cliques in Graphs
    Brunato, Mauro
    Hoos, Holger H.
    Battiti, Roberto
    LEARNING AND INTELLIGENT OPTIMIZATION, 2008, 5313 : 41 - +
  • [35] Maximal Quasi-Cliques Mining in Uncertain Graphs
    Qiao, Lianpeng
    Li, Rong-Hua
    Zhang, Zhiwei
    Yuan, Ye
    Wang, Guoren
    Qin, Hongchao
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 37 - 50
  • [36] On eigenfunctions and maximal cliques of Paley graphs of square order
    Goryainov, Sergey
    Kabanov, Vladislav V.
    Shalaginov, Leonid
    Valyuzhenich, Alexandr
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 : 361 - 369
  • [37] Homothetic polygons and beyond: Maximal cliques in intersection graphs
    Brimkov, Valentin E.
    Junosza-Szaniawski, Konstanty
    Kafer, Sean
    Kratochvil, Jan
    Pergel, Martin
    Rzazewski, Pawel
    Szczepankiewicz, Matthew
    Terhaar, Joshua
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 263 - 277
  • [38] Output-Sensitive Enumeration of Potential Maximal Cliques in Polynomial Space
    Brosse, Caroline
    Conte, Alessio
    Limouzy, Vincent
    Punzi, Giulia
    Rucci, Davide
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 382 - 395
  • [39] Coupling graph perturbation theory with scalable parallel algorithms for large-scale enumeration of maximal cliques in biological graphs
    Samatova, N. F.
    Schmidt, M. C.
    Hendrix, W.
    Breimyer, P.
    Thomas, K.
    Park, B. -H.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [40] A two-phase approach for enumeration of maximal (Δ,γ)-cliques of a temporal network
    Banerjee, Suman
    Pal, Bithika
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)