Subspace Identification for Commensurate Fractional Order Systems Using Instrumental Variables

被引:0
|
作者
Liao Zeng [1 ]
Peng Cheng [1 ]
Wang Yong [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
关键词
Commensurate Fractional Order Systems; Subspace Identification; Instrumental Variables;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the identification of commensurate fractional order systems in time domain. A novel identification method is proposed to determine the coefficient matrixes and fractional differential order. The proposed method is based on principle component analysis (PCA) in subspace family, which has been successfully applied in identifying traditional integer order systems. Utilizing the cost function, the problem of estimating the fractional differential order is transformed into parameter optimization process. An instrumental variable (IV) is used to eliminate the bias of identification results. Numerical simulation validates the proposed method.
引用
收藏
页码:1636 / 1640
页数:5
相关论文
共 50 条
  • [21] Subspace identification using instrumental variable techniques
    Gustafsson, T
    [J]. AUTOMATICA, 2001, 37 (12) : 2005 - 2010
  • [22] Reduced-Order Modeling of Commensurate Fractional-Order Systems
    Saxena, Sahaj
    Hote, Yogesh V.
    Arya, Pushkar Prakash
    [J]. 2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [23] Subspace Identification of Closed-Loop EIV System Based on Instrumental Variables Using Orthoprojection
    Li, Youfeng
    Xiong, Zenggang
    Ye, Conghuan
    Zhang, Xuemin
    Xu, Fang
    Zhao, Xiaochao
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (2-3): : 345 - 355
  • [24] Subspace Identification of Closed-Loop EIV System Based on Instrumental Variables Using Orthoprojection
    Youfeng Li
    Zenggang Xiong
    Conghuan Ye
    Xuemin Zhang
    Fang Xu
    Xiaochao Zhao
    [J]. Journal of Signal Processing Systems, 2021, 93 : 345 - 355
  • [25] PEMFC Fractional-order Subspace Identification Model
    Sun Chengshuo
    Qi Zhidong
    Qin Hao
    Shan Liang
    [J]. CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2022, 24 (03) : 151 - 160
  • [26] Model reduction in commensurate fractional-order linear systems
    Tavakoli-Kakhki, M.
    Haeri, M.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2009, 223 (I4) : 493 - 505
  • [27] Complete synchronization of commensurate fractional order chaotic systems using sliding mode control
    Razminia, Abolhassan
    Baleanu, Dumitru
    [J]. MECHATRONICS, 2013, 23 (07) : 873 - 879
  • [28] PEMFC Fractional-order Subspace Identification Model
    Sun Chengshuo
    Qi Zhidong
    Qin Hao
    Shan Liang
    [J]. China Petroleum Processing & Petrochemical Technology, 2022, 24 (03) : 151 - 160
  • [29] A stability test for non-commensurate fractional order systems
    Sabatier, Jocelyn
    Farges, Christophe
    Trigeassou, Jean-Claude
    [J]. SYSTEMS & CONTROL LETTERS, 2013, 62 (09) : 739 - 746
  • [30] Mikhailov stability criterion for fractional commensurate order systems with delays
    Melchor-Aguilar, Daniel
    Mendiola-Fuentes, Jessica
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (15): : 8395 - 8408