Combinatorial properties of the noncommutative FaA di Bruno algebra

被引:1
|
作者
Bultel, Jean-Paul [1 ]
机构
[1] Univ Paris Est Marne La Vallee, Inst Gaspard Monge, F-77454 Champs Sur Marne 2, Marne La Vallee, France
关键词
Noncommutative symmetric functions; Combinatorial Hopf algebras; Lagrange inversion; LAGRANGE INVERSION; SYMMETRICAL FUNCTIONS;
D O I
10.1007/s10801-012-0402-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new combinatorial interpretation of the noncommutative Lagrange inversion formula, more precisely, of the formula of Brouder-Frabetti-Krattenthaler for the antipode of the noncommutative FaA di Bruno algebra.
引用
收藏
页码:243 / 273
页数:31
相关论文
共 50 条
  • [21] The Faa di Bruno formula and determinant identities
    Chu, WC
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (01): : 1 - 25
  • [22] FAA DI BRUNO'S FORMULA AND VOLTERRA SERIES
    Clark, Daniel E.
    Houssineau, Jeremie
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 217 - 219
  • [23] A TANGENT CATEGORY ALTERNATIVE TO THE FAA DI BRUNO CONSTRUCTION
    Lemay, Jean-Simon P.
    THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 : 1072 - 1110
  • [24] FaA di Bruno's Formula and Modular Forms
    Meguedmi, Djohra
    Sebbar, Ahmed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (02) : 409 - 435
  • [25] Faa!di Bruno's formula, lattices, and partitions
    Encinas, LH
    del Rey, AM
    Masqué, JM
    DISCRETE APPLIED MATHEMATICS, 2005, 148 (03) : 246 - 255
  • [26] Five interpretations of Faa di Bruno's formula
    Frabetti, Alessandra
    Manchon, Dominique
    FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 : 91 - 147
  • [27] The curious history of Faa di Bruno's formula
    Johnson, WP
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03): : 217 - 234
  • [28] Faa di Bruno's formula and spatial cluster modelling
    Clark, Daniel E.
    Houssineau, Jeremie
    SPATIAL STATISTICS, 2013, 6 : 109 - 117
  • [29] On the divided difference form of Faa di Bruno's formula
    Wang, Xing-hua
    Wang, He-yu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (04) : 553 - 560
  • [30] A q-analogue of Faa di Bruno's formula
    Johnson, WP
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (02) : 305 - 314