Prediction of Polluted Insulators Characteristics using Artificial Neural Networks

被引:0
|
作者
Teguar, M. [1 ]
Mekhaldi, A. [1 ]
Boubakeur, A. [1 ]
机构
[1] Ecole Natl Polytech, Dept Electrotech, Lab Haute Tens, Lab Rech Electrotech, Algiers 16200, Algeria
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose three prediction algorithms using the artificial neural networks to generalise some characteristics describing the electrical arc propagation on polluted insulators. For that purpose, three Radial Basis Function Gaussian (RBFG) networks with one output have been elaborated. The difference between these configurations consists in the nature of the input and output units. The chosen networks are trained by Random Optimisation Method (ROM). A discussion to determine the best configuration is presented.
引用
收藏
页码:767 / 770
页数:4
相关论文
共 50 条
  • [1] Estimation of polluted insulators flashover time using artificial neural networks
    Farag, AS
    [J]. 1997 IEEE INDUSTRIAL & COMMERCIAL POWER SYSTEMS TECHNICAL CONFERENCE - CONFERENCE RECORD, 1997, : 184 - 192
  • [2] Estimation of polluted insulators flashover time using artificial neural networks
    Farag, AS
    [J]. AFRICON '96 - 1996 IEEE AFRICON : 4TH AFRICON CONFERENCE IN AFRICA, VOLS I & II: ELECTRICAL ENERGY TECHNOLOGY; COMMUNICATION SYSTEMS; HUMAN RESOURCES, 1996, : 226 - 234
  • [3] Combining Artificial Neural Network for Diagnosing Polluted Insulators
    de Aquino, Ronaldo R. B.
    Bezerra, Jose M. B.
    Lira, Milde M. S.
    Santos, Gabriela S. M.
    Neto, Otoni N.
    Lira, Carlos A. B. de O.
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1486 - +
  • [4] The application of artificial neural networks for the prediction of water quality of polluted aquifer
    Gümrah, F
    Öz, B
    Güler, B
    Evin, S
    [J]. WATER AIR AND SOIL POLLUTION, 2000, 119 (1-4): : 275 - 294
  • [5] The Application of Artificial Neural Networks for the Prediction of Water Quality of Polluted Aquifer
    F. Gümrah
    B. Öz
    B. Güler
    S. Evin
    [J]. Water, Air, and Soil Pollution, 2000, 119 : 275 - 294
  • [6] Semantic Characteristics Prediction of Pulmonary Nodule Using Artificial Neural Networks
    Li, Guangxu
    Kim, Hyoungseop
    Tan, Joo Kooi
    Ishikawa, Seiji
    Hirano, Yasushi
    Kido, Shoji
    Tachibana, Rie
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5465 - 5468
  • [7] Prediction on friction characteristics of industrial brakes using artificial neural networks
    Grzegorzek, Wojciech
    Scieszka, Stanislaw F.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2014, 228 (10) : 1025 - 1035
  • [8] PREDICTION OF MECHANICAL CHARACTERISTICS OF SOILCRETE MATERIALS USING ARTIFICIAL NEURAL NETWORKS
    Asteris, P. G.
    Alexandridis, A.
    Kolovos, K. G.
    Anesti, E. G.
    Douvika, M. G.
    Karamani, C. A.
    Kassolis, M. G.
    Skentou, A. D.
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN (M2D2017), 2017, : 973 - 984
  • [9] Prediction of emission characteristics of a diesel engine using experimental and artificial neural networks
    Tran Van Hung
    Hussein H. Alkhamis
    Abdulwahed F. Alrefaei
    Yasin Sohret
    Kathirvel Brindhadevi
    [J]. Applied Nanoscience, 2023, 13 : 433 - 442
  • [10] Flashover Characteristics of Artificial Polluted UHV AC Bushing Insulators
    Xu, Tao
    Xu, Zuoming
    [J]. 2013 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (CEIDP), 2013, : 387 - 390