Smooth foreground-background segmentation for video processing

被引:0
|
作者
Schindler, K [1 ]
Wang, H [1 ]
机构
[1] Monash Univ, Clayton, Vic 3168, Australia
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an efficient way to account for spatial smoothness in foreground-background segmentation of video sequences. Most statistical background modeling techniques regard the pixels in an image as independent. and disregard the fundamental concept of smoothness. In contrast, we model smoothness of the foreground and background with a Markov random field, in such a way that it can be globally optimized at video frame rate. As a background model, the mixture-of-Gaussian (MOG) model is adopted and enhanced with several improvements developed for other background models. Experimental results show that the MOG model is still competitive, and that segmentation with the smoothness prior outperforms other methods.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 50 条
  • [41] Foreground-background registration for angiography fundus images
    Ren, Hugang
    Su, Susan
    Kolli, Archana
    D'Souza, Neil
    Manivannan, Niranchana
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [42] CIRCULAR VECTION AS A FUNCTION OF FOREGROUND-BACKGROUND RELATIONSHIPS
    OHMI, M
    HOWARD, IP
    LANDOLT, JP
    [J]. PERCEPTION, 1987, 16 (01) : 17 - 22
  • [43] Motion-aware Contrastive Video Representation Learning via Foreground-background Merging
    Ding, Shuangrui
    Li, Maomao
    Yang, Tianyu
    Qian, Rui
    Xu, Haohang
    Chen, Qingyi
    Wang, Jue
    Xiong, Hongkai
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9706 - 9716
  • [44] Efficient and fast multi-modal foreground-background segmentation using RGBD data
    Trabelsi, Rim
    Jabri, Issam
    Smach, Fethi
    Bouallegue, Ammar
    [J]. PATTERN RECOGNITION LETTERS, 2017, 97 : 13 - 20
  • [45] Real-time foreground-background segmentation using adaptive support vector machine algorithm
    Hao, Zhifeng
    Wen, Wen
    Liu, Zhou
    Yang, Xiaowei
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 2, PROCEEDINGS, 2007, 4669 : 603 - +
  • [46] Segmentation tracking and recognition based on foreground-background absolute features, simplified SIFT, and particle filters
    Jo, Yong-Gun
    Lee, Ja-Yong
    Kang, Hoon
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1264 - +
  • [47] PDLFBR-Net: Partial Decoder Localization and Foreground-Background Refinement Network for Polyp Segmentation
    Peng, Yanbin
    Feng, Mingkun
    Zhai, Zhinian
    Zheng, Zhijun
    [J]. IEEE ACCESS, 2024, 12 : 114280 - 114294
  • [48] Experiential sampling based foreground/background segmentation for video surveillance
    Atrey, Pradeep K.
    Kumar, Vinay
    Kumar, Anurag
    Kankanhalli, Mohan S.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 1809 - 1812
  • [49] AN EFFECTIVE FOREGROUND/BACKGROUND SEGMENTATION APPROACH FOR BOOTSTRAPPING VIDEO SEQUENCES
    Hsiao, Han-Hui
    Leou, Jin-Jang
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1177 - 1180
  • [50] Unsupervised NN approach and PCA for background -foreground video segmentation
    Acciani, G
    Guaragnella, C
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 296 - 299