Generalized Bayes estimate;
Integration by parts;
Minimax estimate;
Multivariate normal mean;
Invariant loss;
Unknown variance;
Weakly differentiable function;
D O I:
10.1016/j.jmva.2008.02.016
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We construct a broad class of generalized Bayes minimax estimators of the mean of a multivariate normal distribution with covariance equal to sigma I-2(p), with sigma(2) unknown, and under the invariant loss parallel to delta(X) - theta parallel to(2)/sigma(2). Examples that illustrate the theory are given. Most notably it is shown that a hierarchical version of the multivariate Student-t prior yields a Bayes minimax estimate. (C) 2008 Elsevier Inc. All rights reserved.