Support for High-Level Quantum Bayesian Inference

被引:0
|
作者
Przewiezlikowski, Marcin [1 ]
Grabowski, Michal [1 ]
Kurzyk, Dariusz [2 ]
Rycerz, Katarzyna [1 ]
机构
[1] AGH Univ Sci & Technol, Inst Comp Sci, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
来源
关键词
Quantum Bayesian networks; Quantum games; Julia language;
D O I
10.1007/978-3-030-22750-0_76
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present AcausalNets. jl - a library supporting inference in a quantum generalization of Bayesian networks and their application to quantum games. The proposed solution is based on modern approach to numerical computing provided by Julia language. The library provides a high-level functions for Bayesian inference that can be applied to both classical and quantum Bayesian networks.
引用
收藏
页码:764 / 770
页数:7
相关论文
共 50 条
  • [21] RESONANCE PHENOMENA AT HIGH-LEVEL DENSITY AND QUANTUM CHAOS
    ROTTER, I
    [J]. REVISTA MEXICANA DE FISICA, 1992, 38 : 164 - 172
  • [22] Uncomputation in the Qrisp High-Level Quantum Programming Framework
    Seidel, Raphael
    Tcholtchev, Nikolay
    Bock, Sebastian
    Hauswirth, Manfred
    [J]. REVERSIBLE COMPUTATION, RC 2023, 2023, 13960 : 150 - 165
  • [23] An Electronic Marketplaces' Pricing Model based on High-Level Belief Inference
    Han, Wei
    Zhao, Ming
    Chen, Youguang
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 4085 - +
  • [24] POOR READING-COMPREHENSION - THE EFFECTS OF HIGH-LEVEL INFERENCE TRAINING
    YUILL, N
    [J]. BULLETIN OF THE BRITISH PSYCHOLOGICAL SOCIETY, 1986, 39 : A100 - A100
  • [25] Advantages of a modular high-level quantum programming framework
    Steiger, Damian S.
    Haner, Thomas
    Troyer, Matthias
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2019, 66 (81-89) : 81 - 89
  • [26] High-level observability for effective high-level ATPG
    Corno, Fulvio
    Sonza Reorda, Matteo
    Squillero, Giovanni
    [J]. Proceedings of the IEEE VLSI Test Symposium, 2000, : 411 - 416
  • [27] Salient object detection with high-level prior based on Bayesian fusion
    Wang, Anzhi
    Wang, Minghui
    Pan, Gang
    Yuan, Xiaoyan
    [J]. IET COMPUTER VISION, 2017, 11 (03) : 199 - 206
  • [28] Fault Diagnosis for High-Level Applications Based on Dynamic Bayesian Network
    Li, Zhiqing
    Cheng, Lu
    Qiu, Xue-song
    Wu, Li
    [J]. MANAGEMENT ENABLING THE FUTURE INTERNET FOR CHANGING BUSINESS AND NEW COMPUTING SERVICES, PROCEEDINGS, 2009, 5787 : 61 - 70
  • [29] System-Level FPGA Device Driver with High-Level Synthesis Support
    Vipin, Eizhemat
    Shreejith, Shanker
    Gunasekera, Dulitha
    Fahmy, Suhaib A.
    Kapre, Nachiket
    [J]. PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2013, : 128 - 135
  • [30] Picturing classical and quantum Bayesian inference
    Bob Coecke
    Robert W. Spekkens
    [J]. Synthese, 2012, 186 : 651 - 696