Learning from multiple sources of inaccurate data

被引:2
|
作者
Baliga, G
Jain, S
Sharma, A
机构
[1] NATL UNIV SINGAPORE, DEPT INFORMAT SYST & COMP SCI, SINGAPORE 117548, SINGAPORE
[2] UNIV NEW S WALES, SCH ENGN & COMP SCI, SYDNEY, NSW 2052, AUSTRALIA
关键词
inductive inference; machine learning; inaccurate data; multiple sources;
D O I
10.1137/S0097539792239461
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Most theoretical models of inductive inference make the idealized assumption that the data available to a learner is from a single and accurate source. The subject of inaccuracies in data emanating from a single source has been addressed by several authors. The present paper argues in favor of a more realistic learning model in which data emanates from multiple sources, some or all of which may be inaccurate. Three kinds of inaccuracies are considered: spurious data (modeled as noisy texts), missing data (modeled as incomplete texts), and a mixture of spurious and missing data (modeled as imperfect texts). Motivated by the above argument, the present paper introduces and theoretically analyzes a number of inference criteria in which a learning machine is fed data from multiple sources, some of which may be infected with inaccuracies. The learning situation modeled is the identification in the limit of programs from graphs of computable functions. The main parameters of the investigation are: the kind of inaccuracy, the total number of data sources, the number of faulty data sources which produce data within an acceptable bound, and the bound on the number of errors allowed in the final hypothesis learned by the machine. Sufficient conditions are determined under which, for the same kind of inaccuracy, for the same bound on the number of errors in the final hypothesis, and for the same bound on the number of inaccuracies, learning from multiple texts, some of which may be inaccurate, is equivalent to learning from a single inaccurate text. The general problem of determining when learning from multiple inaccurate texts is a restriction over learning from a single inaccurate text turns out to be combinatorially Very complex. Significant partial results are provided for this problem. Several results are also provided about conditions under which the detrimental effects of multiple texts can be overcome by either allowing more errors in the final hypothesis or by reducing the number of inaccuracies in the texts. It is also shown that the usual hierarchies resulting from allowing extra errors in the final program (results in increased learning power) and allowing extra inaccuracies in the texts (results in decreased learning power) hold. Finally, it is demonstrated that in the context of learning from multiple inaccurate texts, spurious data is better than missing data, which in turn is better than a mixture of spurious and missing data.
引用
收藏
页码:961 / 990
页数:30
相关论文
共 50 条
  • [31] Learning from Multiple Sources via Multiple Domain Relationship
    Liu, Zhen
    Yang, Junan
    Liu, Hui
    Liu, Jian
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (07): : 1941 - 1944
  • [32] Discovery of classifications from data of multiple sources
    Wen, JH
    Ling, C
    Yang, Q
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2281 - 2286
  • [33] Dealing with Data from Multiple Web Sources
    Batista, Natercia A.
    Brandao, Michele A.
    Pinheiro, Michele B.
    Dalip, Daniel H.
    Moro, Mirella M.
    WEBMEDIA'18: PROCEEDINGS OF THE 24TH BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2018, : 3 - 6
  • [34] COMPARISON OF EPIDEMIOLOGIC DATA FROM MULTIPLE SOURCES
    HORWITZ, RI
    JOURNAL OF CHRONIC DISEASES, 1986, 39 (11): : 889 - 896
  • [35] Discovering classification from data of multiple sources
    Ling, CX
    Yang, Q
    DATA MINING AND KNOWLEDGE DISCOVERY, 2006, 12 (2-3) : 181 - 201
  • [36] Outlier detection from multiple data sources
    Ma, Yang
    Zhao, Xujun
    Zhang, Chaowei
    Zhang, Jifu
    Qin, Xiao
    INFORMATION SCIENCES, 2021, 580 : 819 - 837
  • [37] Discovering Classification from Data of Multiple Sources
    Charles X. Ling
    Qiang Yang
    Data Mining and Knowledge Discovery, 2006, 12 : 181 - 201
  • [38] From multiple modes for surveys to multiple data sources for estimates
    Citro, Constance F.
    SURVEY METHODOLOGY, 2014, 40 (02) : 137 - 161
  • [39] Consolidation and Transmission of Multiple xAPI Data Sources from Virtual Learning Environments to Different Learning Record Stores
    Srbecky, Ramona
    Koeferl, Udo
    Wetzel, Simon-Alexander
    Winterhagen, Michael
    Fraas, Wieland
    Dettmers, Jan
    Hemmje, Matthias
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II, 2025, 2134 : 87 - 102
  • [40] Semiparametric inference for merged data from multiple data sources
    Saegusa, Takumi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 216 : 1 - 14