Non-integrability of the generalized spring-pendulum problem

被引:20
|
作者
Maciejewski, AJ
Przybylska, M
Weil, JA
机构
[1] Univ Zielona Gora, Inst Astron, PL-65246 Zielona Gora, Poland
[2] INRIA, Projet CAFE, F-06902 Sophia Antipolis, France
[3] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
[4] Fac Sci, LACO, F-87060 Limoges, France
来源
关键词
D O I
10.1088/0305-4470/37/7/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a generalization of the three-dimensional spring-pendulum system. The problem depends on two real parameters (k, a), where k is the Young modulus of the spring and a describes the nonlinearity of elastic forces. We show that this system is not integrable when k not equal -a. We carefully investigated the case k = -a when the necessary condition for integrability given by the Morales-Ruiz-Ramis theory is satisfied. We discuss an application of the higher order variational equations for proving the non-integrability in this case.
引用
收藏
页码:2579 / 2597
页数:19
相关论文
共 50 条
  • [21] Non-integrability of the anisotropic Stormer problem with angular momentum
    Almeida, MA
    Stuchi, TJ
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 219 - 233
  • [22] The meromorphic non-integrability of the three-body problem
    Tsygvintsev, A
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 537 : 127 - 149
  • [23] Non-integrability of the restricted three-body problem
    Yagasaki, Kazuyuki
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [24] Algebraic proof of the non-integrability of Hill's problem
    Morales-Ruiz, JJ
    Simó, C
    Simon, S
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1237 - 1256
  • [25] Integrability and non-integrability in quantum mechanics
    Kus, M
    [J]. JOURNAL OF MODERN OPTICS, 2002, 49 (12) : 1979 - 1985
  • [26] Non-integrability of the minimum-time Kepler problem
    Orieux, M.
    Caillau, J-B
    Combot, T.
    Fejoz, J.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 452 - 459
  • [27] Automorphisms and non-integrability
    Pereira, JV
    Sánchez, PF
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (03): : 379 - 385
  • [28] NON-INTEGRABILITY OF THE COLLINEAR THREE-BODY PROBLEM
    Shibayama, Mitsuru
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (01) : 299 - 312
  • [29] NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM
    Shi, Shaoyun
    Li, Wenlei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1645 - 1655
  • [30] INTEGRABILITY AND NON-INTEGRABILITY IN HAMILTONIAN-MECHANICS
    KOZLOV, VV
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (01) : 1 - 76