Three-stage anaerobic co-digestion of food waste and waste activated sludge: Identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters

被引:18
|
作者
Zhang, Le [1 ]
Loh, Kai-Chee [1 ,4 ]
Zhang, Jingxin [3 ]
Mao, Liwei [2 ]
Tong, Yen Wah [1 ,2 ]
Wang, Chi-Hwa [1 ,2 ]
Dai, Yanjun [4 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[2] Natl Univ Singapore, NUS Environm Res Inst, 1 Create Way,Create Tower 15-02, Singapore 138602, Singapore
[3] Shanghai Jiao Tong Univ, China UK Low Carbon Coll, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China
基金
新加坡国家研究基金会;
关键词
Three-stage anaerobic co-digestion; Functional segregation; Biogas production; Microbial enrichment; Multivariate statistical analysis; INTERSPECIES ELECTRON-TRANSFER; METHANE PRODUCTION; SINGLE-STAGE; ENERGY; WATER; PH; HYDROLYSIS; SCALE; FERMENTATION; ENHANCEMENT;
D O I
10.1016/j.biortech.2019.121333
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A three-stage anaerobic digester setup was configured and evaluated for enhanced methane production during co-digestion of food waste and waste activated sludge and the corresponding bacterial and methanogen communities were characterized. Results showed that the average methane yield (0.496 L/gVS) in the three-stage digester was 13-52% higher than that of one- and two-stage digesters. Compared to controls, an increase of 12-47% in volatile solids reduction was achieved in the three-stage digester (69.3 +/- 6.7%). Bacterial phyla Proteobacteria, Firmicutes and Bacteroidetes dominated in one-, two- and three-stage digester while genera Pseudomonas, Tissierella, and Petrimonas were selectively enriched in the three-stage digester due to functional segregation. Taxonomic analysis identified 8 dominant methanogen genera, of which Methanosarcina, Methanosaeta, Methanobacterium and Methanolinea collectively accounted for 80%. With increasing OLR and digester stage number, the dominant methanogenic pathway shifted from hydrogenotrophic pattern to acet-oclastic pattern and reached a final synergy of these two.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Yubo Wang
    Chunxiao Wang
    Yulin Wang
    Yu Xia
    Guanghao Chen
    Tong Zhang
    Applied Microbiology and Biotechnology, 2017, 101 : 7755 - 7766
  • [22] Performance of Anaerobic Membrane Bioreactors for the Co-digestion of Sewage Sludge and Food Waste
    Dai J.-J.
    Niu C.-X.
    Pan Y.
    Lu X.-Q.
    Zhen G.-Y.
    Zheng C.-T.
    Zhang R.-L.
    He X.-Y.
    Huanjing Kexue/Environmental Science, 2020, 41 (08): : 3740 - 3747
  • [23] Performance of AnMBR for the co-digestion of food waste and waste activity sludge
    Lu, Bin
    Gong, Kai
    Jiang, Hong-Yu
    Li, Qian
    Chen, Rong
    Zhongguo Huanjing Kexue/China Environmental Science, 2021, 41 (05): : 2290 - 2298
  • [24] Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge
    Lee, Eunyoung
    Bittencourt, Paula
    Casimir, Lensey
    Jimenez, Eduardo
    Wang, Meng
    Zhang, Qiong
    Ergas, Sarina J.
    WASTE MANAGEMENT, 2019, 95 : 432 - 439
  • [25] Anaerobic co-digestion of waste activated sludge and fish waste: Methane production performance and mechanism analysis
    Wu, Yuqi
    Song, Kang
    JOURNAL OF CLEANER PRODUCTION, 2021, 279
  • [26] Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite
    Zhao, Ting
    Chen, Yongdong
    Yu, Qing
    Shi, Dezhi
    Chai, Hongxiang
    Li, Li
    Ai, Hainan
    Gu, Li
    He, Qiang
    PLOS ONE, 2019, 14 (07):
  • [27] Anaerobic co-digestion of waste activated sludge and fish waste: Methane production performance and mechanism analysis
    Wu, Yuqi
    Song, Kang
    Journal of Cleaner Production, 2021, 279
  • [28] Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste
    Gou, Chengliu
    Yang, Zhaohui
    Huang, Jing
    Wang, Huiling
    Xu, Haiyin
    Wang, Like
    CHEMOSPHERE, 2014, 105 : 146 - 151
  • [29] Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility
    Da Ros, C.
    Cavinato, C.
    Cecchi, F.
    Bolzonella, D.
    WATER SCIENCE AND TECHNOLOGY, 2014, 69 (02) : 269 - 277
  • [30] A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge
    Paranjpe, Archana
    Saxena, Seema
    Jain, Pankaj
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 338