Conditional Measures of Determinantal Point Processes

被引:6
|
作者
Bufetov, A. I. [1 ,2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Ecole Cent Marseille, Inst Math Marseille, Marseille, France
[2] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
基金
欧洲研究理事会;
关键词
determinantal point processes; Gibbs property; Palm measures; LEVEL-SPACING DISTRIBUTIONS; RIGIDITY; FERMION; BESSEL; AIRY;
D O I
10.1134/S0016266320010025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given one-dimensional determinantal point processes induced by orthogonal projections with integrable kernels satisfying a certain growth condition, it is proved that their conditional measures with respect to the configuration in the complement of a compact interval are orthogonal polynomial ensembles with explicitly found weights. Examples include the sine-process and the process with Bessel kernel. The main role in the argument is played by the quasi-invariance, established in [2], of our point processes under the group of piecewise isometries of Double-struck capital R.
引用
收藏
页码:7 / 20
页数:14
相关论文
共 50 条
  • [21] Quantifying repulsiveness of determinantal point processes
    Biscio, Christophe Ange Napoleon
    Lavancier, Frederic
    [J]. BERNOULLI, 2016, 22 (04) : 2001 - 2028
  • [22] Difference operators and determinantal point processes
    Olshanski, Grigori
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (04) : 317 - 329
  • [23] Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions
    Bufetov, Alexander I.
    Qiu, Yanqi
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (06) : 551 - 555
  • [24] On simulation of continuous determinantal point processes
    Lavancier, Frederic
    Rubak, Ege
    [J]. STATISTICS AND COMPUTING, 2023, 33 (05)
  • [25] MONTE CARLO WITH DETERMINANTAL POINT PROCESSES
    Bardenet, Remi
    Hardy, Adrien
    [J]. ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 368 - 417
  • [26] Learning Nonsymmetric Determinantal Point Processes
    Gartrell, Mike
    Brunel, Victor-Emmanuel
    Dohmatob, Elvis
    Krichene, Syrine
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Determinantal Point Processes for Image Processing
    Launay, Claire
    Desolneux, Agnes
    Galerne, Bruno
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (01): : 304 - 348
  • [28] Determinantal point processes in the flat limit
    Barthelme, Simon
    Tremblay, Nicolas
    Usevich, Konstantin
    Amblard, Pierre-Olivier
    [J]. BERNOULLI, 2023, 29 (02) : 957 - 983
  • [29] On simulation of continuous determinantal point processes
    Frédéric Lavancier
    Ege Rubak
    [J]. Statistics and Computing, 2023, 33
  • [30] Determinantal Point Processes for Machine Learning
    Kulesza, Alex
    Taskar, Ben
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (2-3): : 123 - 286