REGENERATING HYPERBOLIC CONE 3-MANIFOLDS FROM DIMENSION 2

被引:4
|
作者
Porti, Joan [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Cerdanyola Del Valles 08193, Spain
关键词
orbifold; hyperbolic cone 3-manifold; degeneration; hyperbolic polygon; perimeter; GROUP-REPRESENTATIONS; FUNDAMENTAL-GROUPS; VARIETY;
D O I
10.5802/aif.2820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
引用
收藏
页码:1971 / 2015
页数:45
相关论文
共 50 条
  • [1] On the collapsing along deformations of hyperbolic cone 3-manifolds
    Barreto, Alexandre Paiva
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) : 539 - 557
  • [2] Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds
    Richard D. Canary
    Yair N. Minsky
    Edward C. Taylor
    [J]. The Journal of Geometric Analysis, 1999, 9 (1): : 17 - 40
  • [3] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [4] On 2-Systoles of Hyperbolic 3-Manifolds
    Belolipetsky, Mikhail
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (03) : 813 - 827
  • [5] On 2-Systoles of Hyperbolic 3-Manifolds
    Mikhail Belolipetsky
    [J]. Geometric and Functional Analysis, 2013, 23 : 813 - 827
  • [6] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [7] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [8] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [9] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    [J]. Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [10] Exceptional hyperbolic 3-manifolds
    Gabai, David
    Trnkova, Maria
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 703 - 730