Structure of the Rh2O3(0001) surface

被引:36
|
作者
Blomberg, S. [1 ]
Lundgren, E. [1 ]
Westerstrom, R. [1 ]
Erdogan, E. [1 ]
Martin, N. M. [1 ]
Mikkelsen, A. [1 ]
Andersen, J. N. [1 ]
Mittendorfer, F. [2 ,3 ]
Gustafson, J. [1 ]
机构
[1] Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden
[2] Vienna Univ Technol, Inst Appl Phys, Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria
基金
瑞典研究理事会;
关键词
HRCLS; XPS; STM; LEED; Rh(111); Rh2O3; AUGMENTED-WAVE METHOD; CO OXIDATION; CATALYTIC REACTIVITY; MOLECULAR-DYNAMICS; V2O3(0001) SURFACE; AMBIENT PRESSURES; ATOMIC-SCALE; RH; METALS; NANOPARTICLES;
D O I
10.1016/j.susc.2012.05.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have studied the (0001) surface termination of Rh2O3 on a Rh(111) single crystal using a combination of high resolution core level spectroscopy, low energy electron diffraction, scanning tunneling microscopy and density functional theory. By exposing the Rh(111) to atomic oxygen we are able to grow Rh2O3 layers exposing the (0001) surface. The experiments support the theoretical predictions stating that the surface is terminated with an O-Rh-O trilayer yielding a RhO2 termination instead of a bulk Rh2O3 termination. The structural details as found by the DFT calculations are presented and reasons for the previously observed strong differences in catalytic activity between the structurally similar RhO2 surface oxide, and the Rh2O3(0001) surface are discussed. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1416 / 1421
页数:6
相关论文
共 50 条
  • [31] Impact of ambient oxygen on the surface structure of α-Cr2O3(0001)
    Bikondoa, O.
    Moritz, W.
    Torrelles, X.
    Kim, H. J.
    Thornton, G.
    Lindsay, R.
    PHYSICAL REVIEW B, 2010, 81 (20):
  • [32] MOSSBAUER EFFECT STUDIES ON X(RH2O3)1-X(FE2O3) SYSTEM
    DEZSI, I
    ERLAKI, G
    KESZTHELYI, L
    PHYSICA STATUS SOLIDI, 1967, 21 (02): : K121 - +
  • [33] Rh2O3 versus IrO2: relativistic effects and the stability of Ir4+
    Miao, M-S
    Seshadri, R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (21)
  • [34] Charge screening effects in the resonant photoemission of Rh2O3, RuO2, and MoO2
    Stoeberl, V
    Guedes, E. B.
    Abbate, M.
    Abud, F.
    Jardim, R. F.
    Mossanek, R. J. O.
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [35] Oxidation/reduction kinetics of supported Rh/Rh2O3 nanoparticles in plug flow conditions using dispersive EXAFS
    Newton, MA
    Fiddy, SG
    Guilera, G
    Jyoti, B
    Evans, J
    CHEMICAL COMMUNICATIONS, 2005, (01) : 118 - 120
  • [36] Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation
    Liu, Huan
    Ma, Zhen
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (01) : 109 - 115
  • [37] Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation
    Huan Liu
    Zhen Ma
    Chinese Journal of Chemical Engineering, 2018, 26 (01) : 109 - 115
  • [38] Surface structure of α-Cr2O3(0001) after activated oxygen exposure
    Kaspar, Tiffany C.
    Chamberlin, Sara E.
    Chambers, Scott A.
    SURFACE SCIENCE, 2013, 618 : 159 - 166
  • [39] Effects of temperature and O partial pressure on the atomic structure of Al2O3 (0001) surface
    Sun, Shiyang
    Xu, Pingping
    Ma, Bingyang
    Shang, Hailong
    Li, Geyang
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 157 : 37 - 42
  • [40] The surface stability of Cr2O3(0001)
    Cao, Shi
    Wu, Ning
    Echtenkamp, William
    Lauter, Valeria
    Ambaye, Haile
    Komesu, Takashi
    Binek, Christian
    Dowben, Peter A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (25)