The Euler-Lagrange and Legendre equations for functionals involving distributed-order fractional derivatives

被引:12
|
作者
Almeida, Ricardo [1 ]
Luisa Morgado, M. [2 ,3 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Univ Tras Os Montes & Alto Douro, Pole CMAT UTAD, Ctr Math, Vila Real, Portugal
[3] Univ Tras Os Montes & Alto Douro, UTAD, Dept Math, Vila Real, Portugal
关键词
Distributed-order fractional derivative; Euler-Lagrange equation; Legendre condition; Numerical methods; DIFFUSION EQUATION; VARIATIONAL CALCULUS; BOUNDED DOMAINS; FORMULATION;
D O I
10.1016/j.amc.2018.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend some fractional calculus of variations results by considering functionals depending on distributed-order fractional derivatives. Using variational techniques, we deduce optimal necessary conditions of Euler-Lagrange and Legendre type. We also study the case where integral and holonomic constraints are imposed. Finally, a numerical procedure is given to solve some proposed problems. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [31] Fractional Order Euler-Lagrange Model for Accelerated Gradient Methods
    Aal, Osama F. Abdel
    Viola, Jairo
    Chen, YangQuan
    IFAC PAPERSONLINE, 2024, 58 (12): : 466 - 471
  • [32] On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative
    Baleanu, Dumitru
    Muslih, Sami I.
    Rabei, Eqab M.
    NONLINEAR DYNAMICS, 2008, 53 (1-2) : 67 - 74
  • [33] Fractional Euler-Lagrange and fractional Hamilton equations for super symmetric classical model
    Baleanu, Dumitru
    Muslih, Sami I.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (04) : 379 - 383
  • [34] Euler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives
    Teodor M. Atanacković
    Marko Janev
    Stevan Pilipović
    Dušan Zorica
    Journal of Optimization Theory and Applications, 2017, 174 : 256 - 275
  • [35] The first-order Euler-Lagrange equations and some of their uses
    C. Adam
    F. Santamaria
    Journal of High Energy Physics, 2016
  • [36] Second order Euler-Lagrange equations for trivial principal bundles
    Colombo, Leonardo
    Jimenez, Fernando
    de Diego, David Martin
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 185 - 192
  • [37] Euler-Lagrange Equations of Networks with Higher-Order Elements
    Biolek, Zdenek
    Biolek, Dalibor
    RADIOENGINEERING, 2017, 26 (02) : 397 - 405
  • [38] Nonsmooth convex functionals and feeble viscosity solutions of singular Euler-Lagrange equations
    Katzourakis, Nikos
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 275 - 298
  • [39] Generalized Euler-Lagrange Equations for Variational Problems with Scale Derivatives
    Almeida, Ricardo
    Torres, Delfim F. M.
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (03) : 221 - 229
  • [40] The first-order Euler-Lagrange equations and some of their uses
    Adam, C.
    Santamaria, F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):