Minimum total variation in 3D ultrasound reconstruction

被引:0
|
作者
Sanches, J [1 ]
Bioucas-Dias, JM [1 ]
Marques, JS [1 ]
机构
[1] Univ Tecn Lisboa, Inst Telecomunicacoes, Inst Sistemas & Robot, Inst Super Tecn, Lisbon, Portugal
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a Bayesian 3D ultrasound reconstruction/estimation from non-uniform ultrasound observations, non-Gaussian data fidelity term, and total variation (TV) based prior. To compute the maximum a posteriori (MAP) solution, we introduce a Generalized Expectation Maximization (GEM) algorithm, which converges to the exact MAP solution in the case of convex data fidelity term. A set of experiments illustrates the effectiveness of the method.
引用
收藏
页码:2889 / 2892
页数:4
相关论文
共 50 条
  • [1] A Total Variation Based Reconstruction Algorithm for 3D Ultrasound
    Afonso, Manya V.
    Sanches, Joao M. R.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 149 - 156
  • [2] A modified total variation denoising method in the context of 3D ultrasound images
    Ogier, A
    Hellier, P
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 70 - 77
  • [3] Total Variation Regularization of Pose Signals With an Application to 3D Freehand Ultrasound
    Esposito, Marco
    Hennersperger, Christoph
    Goebl, Ruediger
    Demaret, Laurent
    Storath, Martin
    Navab, Nassir
    Baust, Maximilian
    Weinmann, Andreas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2245 - 2258
  • [4] Total Variation Based 3D Reconstruction from Monocular Laparoscopic Sequences
    Marcinczak, Jan Marek
    Grigat, Rolf-Rainer
    ABDOMINAL IMAGING: COMPUTATIONAL AND CLINICAL APPLICATIONS, 2014, 8676 : 239 - 247
  • [5] 3D Segmentation and Reconstruction of Endobronchial Ultrasound
    Zang, Xiaonan
    Breslav, Mikhail
    Higgins, William E.
    MEDICAL IMAGING 2013: ULTRASONIC IMAGING, TOMOGRAPHY, AND THERAPY, 2013, 8675
  • [6] MMSE reconstruction for 3D ultrasound images
    Huang, W
    Zheng, YB
    Molloy, JA
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1641 - 1644
  • [7] 3D TOF-PET image reconstruction using total variation regularization
    Raczynski, L.
    Wislicki, W.
    Klimaszewski, K.
    Krzemien, W.
    Kopka, P.
    Kowalski, P.
    Shopa, R. Y.
    Bala, M.
    Chhokar, J.
    Curceanu, C.
    Czerwinski, E.
    Dulski, K.
    Gajewski, J.
    Gajos, A.
    Gorgol, M.
    Del Grande, R.
    Hiesmayr, B.
    Jasinska, B.
    Kacprzak, K.
    Kaplon, L.
    Kisielewska, D.
    Korcyl, G.
    Kozik, T.
    Krawczyk, N.
    Kubicz, E.
    Mohammed, M.
    Niedzwiecki, S. Z.
    Palka, M.
    Pawlik-Niedzwiecka, M.
    Raj, J.
    Rakoczy, K.
    Rucinski, A.
    Sharma, S.
    Shivani, S.
    Silarski, M.
    Skurzok, M.
    Stepien, E. L.
    Zgardzinska, B.
    Moskal, P.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 80 : 230 - 242
  • [8] Total variation regularization for 3D reconstruction in fluorescence tomography: experimental phantom studies
    Behrooz, Ali
    Zhou, Hao-Min
    Eftekhar, Ali A.
    Adibi, Ali
    APPLIED OPTICS, 2012, 51 (34) : 8216 - 8227
  • [9] Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method
    Yu, Haiqing
    Chen, Zhi
    Zhang, Heye
    Wong, Kelvin Kian Loong
    Chen, Yunmei
    Liu, Huafeng
    PLOS ONE, 2015, 10 (09):
  • [10] 3D Anisotropic Total Variation method for Limited-angle CT Reconstruction
    Yang, Yao
    Li, Liang
    Chen, Zhiqiang
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,