A gene responsible for prolylhydroxylation of moss-produced recombinant human erythropoietin

被引:37
|
作者
Parsons, Juliana [1 ]
Altmann, Friedrich [2 ]
Graf, Manuela [1 ]
Stadlmann, Johannes [2 ]
Reski, Ralf [1 ,3 ,4 ]
Decker, Eva L. [1 ]
机构
[1] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany
[2] Univ Nat Resources & Life Sci, Dept Chem, A-1190 Vienna, Austria
[3] BIOSS Ctr Biol Signalling Studies, D-79104 Freiburg, Germany
[4] FRIAS Freiburg Inst Adv Studies, D-79104 Freiburg, Germany
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
O-GLYCOSYLATION; PROLYL; 4-HYDROXYLASE; ARTIFICIAL MICRORNAS; TOBACCO; PLANTS; EXPRESSION; PROTEINS; ANTIBODY; HYDROXYPROLINE; IDENTIFICATION;
D O I
10.1038/srep03019
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] THE ROLE OF RECOMBINANT HUMAN ERYTHROPOIETIN IN NEPHROLOGY
    WATZINGER, U
    PEER, G
    BARNAS, U
    MAYER, G
    LUGER, A
    KOVARIK, J
    GRAF, H
    WIENER KLINISCHE WOCHENSCHRIFT, 1990, 102 (05) : 125 - 130
  • [42] THE ROLE OF CARBOHYDRATE IN RECOMBINANT HUMAN ERYTHROPOIETIN
    TSUDA, E
    KAWANISHI, G
    UEDA, M
    MASUDA, S
    SASAKI, R
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 188 (02): : 405 - 411
  • [43] RECOMBINANT HUMAN ERYTHROPOIETIN - IMPLICATIONS FOR NEPHROLOGY
    ESCHBACH, JW
    ADAMSON, JW
    AMERICAN JOURNAL OF KIDNEY DISEASES, 1988, 11 (03) : 203 - 209
  • [44] Recombinant human erythropoietin in hematologic malignancies
    Bokemeyer, C
    STRAHLENTHERAPIE UND ONKOLOGIE, 2003, 179 (02) : 134 - 135
  • [45] Recombinant human erythropoietin and overall survival
    Charles L. Loprinzi
    Current Oncology Reports, 2005, 7 (4) : 269 - 270
  • [46] CHARACTERIZATION OF PURE HUMAN RECOMBINANT ERYTHROPOIETIN
    EGRIE, JC
    STRICKLAND, TW
    LANE, J
    AOKI, H
    SMALLING, R
    TRAIL, G
    LIN, HK
    BROWNE, JK
    HINES, DK
    COHEN, AM
    EXPERIMENTAL HEMATOLOGY, 1985, 13 (05) : 458 - 458
  • [47] THE USES OF RECOMBINANT-HUMAN-ERYTHROPOIETIN
    PATTERSON, KG
    SAUDI MEDICAL JOURNAL, 1994, 15 (01) : 1 - 13
  • [48] Chromatographic purification of recombinant human erythropoietin
    Adamikova, Jana
    Antosova, Monika
    Polakovic, Milan
    BIOTECHNOLOGY LETTERS, 2019, 41 (4-5) : 483 - 493
  • [49] Erythrocytes as carriers for recombinant human erythropoietin
    Garin, MI
    Lopez, RM
    Sanz, S
    Pinilla, M
    Luque, J
    PHARMACEUTICAL RESEARCH, 1996, 13 (06) : 869 - 874
  • [50] THE INVIVO METABOLISM OF RECOMBINANT HUMAN ERYTHROPOIETIN
    SPIVAK, JL
    ERYTHROPOIETIN : FROM MOLECULAR STRUCTURE TO CLINICAL APPLICATION, 1989, 76 : 67 - 77