RotatGAT: Learning Knowledge Graph Embedding with Translation Assumptions and Graph Attention Networks

被引:0
|
作者
Wang, Guangbin [1 ]
Ding, Yuxin [1 ]
Xie, Zhibin [1 ]
Ma, Yubin [1 ]
Zhou, Zihan [1 ]
Qian, Wen [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge Graph Embedding; Graph Neural Network; Machine Learning; Graph Learning;
D O I
10.1109/IJCNN55064.2022.9892206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graph Embedding (KGE) is to learn continuous vectors of entities and relations in the Knowledge Graph (KG). Inspired by the R-GCN model, we propose a novel embedding learning model named RotatGAT, which combines the RotatE model and the GAT model. The goal is to overcome the shortcomings of R-GCN, that has a relatively high computing complexity and cannot distinguish the importance of neighbors. We introduce the RotatE model into RotatGAT to represent the embeddings of heterogeneous entities and relations in KG. Considering RotatE cannot use the structure information to learn entities' embeddings, we introduce the GAT model to learn the importance of neighbors of an entity and aggregate the feature information of neighbors for graph embedding learning. The link prediction experiments show the overall performance of RotatGAT on four benchmark datasets outperforms existing state-of-the-art models.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] TCKGE: Transformers with contrastive learning for knowledge graph embedding
    Xiaowei Zhang
    Quan Fang
    Jun Hu
    Shengsheng Qian
    Changsheng Xu
    International Journal of Multimedia Information Retrieval, 2022, 11 : 589 - 597
  • [42] GAEAT: Graph Auto-Encoder Attention Networks for Knowledge Graph Completion
    Han, Yanfei
    Fang, Quan
    Hu, Jun
    Qian, Shengsheng
    Xu, Changsheng
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2053 - 2056
  • [43] A Novel Embedding Model for Knowledge Graph Entity Alignment Based on Graph Neural Networks
    Li, Hongchan
    Han, Zhaoyang
    Zhu, Haodong
    Qian, Yuchao
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [44] Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
    Zhao, Ming
    Jia, Weijia
    Huang, Yusheng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 542 - 554
  • [45] Heterogeneous Information Network Embedding with Convolutional Graph Attention Networks
    Cao, Meng
    Ma, Xiying
    Zhu, Kai
    Xu, Ming
    Wang, Chongjun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [46] A data-centric framework of improving graph neural networks for knowledge graph embedding
    Yanan Cao
    Xixun Lin
    Yongxuan Wu
    Fengzhao Shi
    Yanmin Shang
    Qingfeng Tan
    Chuan Zhou
    Peng Zhang
    World Wide Web, 2025, 28 (1)
  • [47] Optimal Recommendation Models Based on Knowledge Representation Learning and Graph Attention Networks
    He, Qing
    Liu, Songyan
    Liu, Yao
    IEEE ACCESS, 2023, 11 : 19809 - 19818
  • [48] Learning Resource Recommendation Model Based on Collaborative Knowledge Graph Attention Networks
    Wang, Chong
    Yue, Peipei
    IEEE Access, 2024, 12 : 153232 - 153242
  • [49] Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation
    Wang, Wei
    Shen, Xiaoxuan
    Yi, Baolin
    Zhang, Huanyu
    Liu, Jianfang
    Dai, Chao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [50] Learning Attention-Based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping
    Wang, Zhihao
    Xu, Honggang
    Li, Xin
    Deng, Yuxin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 141 - 154