Fourier algebras on locally compact hypergroups

被引:2
|
作者
Bami, M. Lashkarizadeh [1 ]
Pourgholarnhossein, M. [1 ]
Samea, H. [2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
[2] Bu Ali Sina Univ, Dept Math, Hamadan, Iran
关键词
Hypergroup; Fourier space; amenability; essential amenability; convolution Banach algebra;
D O I
10.1002/mana.200610719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we introduce a new definition for the Fourier space A(K) of a locally compact Hausdorff hypergroup K and prove that it is a Banach subspace of B(K). This definition coincides with that of Amini and Medghalchi in the case where K is a tensor hypergroup, and also with that of Vrem which is given only for compact hypergroups. We prove that A(p)(K)* = PMq(K), where q is the exponent conjugate to p, in particular A(K)* = VN(K). Also we show that for Pontryagin hypergroups, A(K) = L-2(K) * L-2(K) = F(L-1 ((K) over cap)), where F stands for the Fourier transform on (K) over cap. Furthermore there is an equivalent norm on A(K) which makes A(K) into a Banach algebra isomorphic with L-1(K) over cap. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:16 / 25
页数:10
相关论文
共 50 条
  • [41] Locally convex algebras which determine a locally compact group
    Esslamzadeh, Gholam Hossein
    Javanshiri, Hossein
    Nasr-Isfahani, Rasoul
    [J]. STUDIA MATHEMATICA, 2016, 233 (03) : 197 - 207
  • [43] Hecke algebras and hypergroups
    Krieg, A
    [J]. ANALYSIS ON INFINITE-DIMENSIONAL LIE GROUPS AND ALGEBRAS, 1998, : 197 - 206
  • [44] About some random Fourier series and multipliers theorems on compact commutative hypergroups
    Gebuhrer, MO
    [J]. HARMONIC ANALYSIS AND HYPERGROUPS, 1998, : 33 - 46
  • [45] p-Fourier algebras on compact groups
    Lee, Hun Hee
    Samei, Ebrah M.
    Spronk, Nico
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1469 - 1514
  • [46] Generalized group algebras of locally compact groups
    Jain, S. K.
    Singh, Ajit Iqbal
    Srivastava, Ashish K.
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3559 - 3563
  • [47] LOCALLY COMPACT MONOTHETIC SEMI-ALGEBRAS
    KAASHOEK, MA
    WEST, TT
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1968, 18 : 428 - &
  • [48] LOCALLY COMPACT TRANSFORMATION GROUPS AND C' -ALGEBRAS
    EFFROS, EG
    HAHN, F
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, (75) : 1 - &
  • [49] Weak Amenability of Fourier Algebras on Compact groups
    Forrest, Brian E.
    Samei, Ebrahim
    Spronk, Nico
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) : 1379 - 1393
  • [50] A note on group algebras of locally compact groups
    Srivastava, Ashish K.
    [J]. GROUPS, RINGS, GROUP RINGS, AND HOPF ALGEBRAS, 2017, 688 : 259 - 263