Universal entanglement signatures of foliated fracton phases

被引:85
|
作者
Shirley, Wilbur [1 ,2 ]
Slagle, Kevin [3 ]
Chen, Xie [1 ,2 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
来源
SCIPOST PHYSICS | 2019年 / 6卷 / 01期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.21468/SciPostPhys.6.1.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fracton models exhibit a variety of exotic properties and lie beyond the conventional framework of gapped topological order. In Ref. [1], we generalized the notion of gapped phase to one of foliated fracton phase by allowing the addition of layers of gapped two-dimensional resources in the adiabatic evolution between gapped three-dimensional models. Moreover, we showed that the X-cube model is a fixed point of one such phase. In this paper, according to this definition, we look for universal properties of such phases which remain invariant throughout the entire phase. We propose multipartite entanglement quantities, generalizing the proposal of topological entanglement entropy designed for conventional topological phases. We present arguments for the universality of these quantities and show that they attain non-zero constant value in non-trivial foliated fracton phases.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Emergent fermionic gauge theory and foliated fracton order in the Chamon model
    Shirley, Wilbur
    Liu, Xu
    Dua, Arpit
    PHYSICAL REVIEW B, 2023, 107 (03)
  • [22] Topological entanglement entropy of fracton stabilizer codes
    Ma, Han
    Schmitz, A. T.
    Parameswaran, S. A.
    Hermele, Michael
    Nandkishore, Rahul M.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [23] A universal Riemannian foliated space
    Alvarez Lopez, Jesus A.
    Barral Lijo, Ramon
    Candel, Alberto
    TOPOLOGY AND ITS APPLICATIONS, 2016, 198 : 47 - 85
  • [24] Building fracton phases by Majorana manipulation
    You, Yizhi
    von Oppen, Felix
    PHYSICAL REVIEW RESEARCH, 2019, 1 (01):
  • [25] Towards Classification of Fracton Phases: The Multipole Algebra
    Gromov, Andrey
    PHYSICAL REVIEW X, 2019, 9 (03)
  • [26] Deciphering the nonlocal entanglement entropy of fracton topological orders
    Shi, Bowen
    Lu, Yuan-Ming
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [27] Foliated field theory and string-membrane-net condensation picture of fracton order
    Slagle, Kevin
    Aasen, David
    Williamson, Dominic
    SCIPOST PHYSICS, 2019, 6 (04):
  • [28] Braiding and gapped boundaries in fracton topological phases
    Bulmash, Daniel
    Iadecola, Thomas
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [29] Hybrid fracton phases: Parent orders for liquid and nonliquid quantum phases
    Tantivasadakarn, Nathanan
    Ji, Wenjie
    Vijay, Sagar
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [30] Non-Abelian defects in fracton phases of matter
    You, Yizhi
    PHYSICAL REVIEW B, 2019, 100 (07)