Concave iteration semigroups of linear continuous set-valued functions

被引:2
|
作者
Smajdor, Andrzej [1 ]
Smajdor, Wilhelmina [2 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
[2] Tech Univ Technol, Inst Math, PL-44100 Gliwice, Poland
来源
关键词
Concave iteration semigroup; Derivatives of set-valued functions; Riemann integral of set-valued functions;
D O I
10.2478/s11533-012-0095-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {F (t) : t a parts per thousand yen 0} be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F (0)(x) - F (t) (x) exist for x a K and t > 0, then D (t) F (t) (x) = (-1)F (t) ((-1)G(x)) for x a K and t a parts per thousand yen 0, where D (t) F (t) (x) denotes the derivative of F (t) (x) with respect to t and for x a K.
引用
收藏
页码:2272 / 2282
页数:11
相关论文
共 50 条
  • [31] Jensen's inequalities for set-valued and fuzzy set-valued functions
    Zhang, Deli
    Guo, Caimei
    Chen, Degang
    Wang, Guijun
    FUZZY SETS AND SYSTEMS, 2021, 404 : 178 - 204
  • [32] Selection Properties and Set-Valued Young Integrals of Set-Valued Functions
    Michta, Mariusz
    Motyl, Jerzy
    RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [33] A Newton iteration for differentiable set-valued maps
    Gaydu, Michael
    Geoffroy, Michel H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 213 - 224
  • [34] On uniformly continuous Nemytskij operators generated by set-valued functions
    Ewelina Mainka
    Aequationes mathematicae, 2010, 79 : 293 - 306
  • [35] On Nemytskij operator in the space of absolutely continuous set-valued functions
    Ludew, Jakub J.
    JOURNAL OF APPLIED ANALYSIS, 2011, 17 (02) : 277 - 290
  • [36] On uniformly continuous Nemytskij operators generated by set-valued functions
    Mainka, Ewelina
    AEQUATIONES MATHEMATICAE, 2010, 79 (03) : 293 - 306
  • [37] On the Korovkin-type approximation of set-valued continuous functions
    Campiti, Michele
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (01): : 119 - 134
  • [38] ON ADDITIVE SET-VALUED FUNCTIONS
    NIKODEM, K
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (07): : 1005 - 1013
  • [39] Interpolation of set-valued functions
    Dyn, Nira
    Levin, David
    Muzaffar, Qusay
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [40] INTEGRALS OF SET-VALUED FUNCTIONS
    AUMANN, RJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) : 1 - &