Concave iteration semigroups of linear continuous set-valued functions

被引:2
|
作者
Smajdor, Andrzej [1 ]
Smajdor, Wilhelmina [2 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
[2] Tech Univ Technol, Inst Math, PL-44100 Gliwice, Poland
来源
关键词
Concave iteration semigroup; Derivatives of set-valued functions; Riemann integral of set-valued functions;
D O I
10.2478/s11533-012-0095-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {F (t) : t a parts per thousand yen 0} be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F (0)(x) - F (t) (x) exist for x a K and t > 0, then D (t) F (t) (x) = (-1)F (t) ((-1)G(x)) for x a K and t a parts per thousand yen 0, where D (t) F (t) (x) denotes the derivative of F (t) (x) with respect to t and for x a K.
引用
收藏
页码:2272 / 2282
页数:11
相关论文
共 50 条