Mean Transverse Energy Measurement of Negative Electron Affinity GaAs-Based Photocathode

被引:12
|
作者
Matsuba, Shunya [1 ]
Honda, Yosuke [2 ]
Jin, Xiuguang [3 ]
Miyajima, Tsukasa [2 ]
Yamamoto, Masahiro [2 ]
Uchiyama, Takashi [2 ]
Kuwahara, Makoto [4 ]
Takeda, Yoshikazu [3 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Hiroshima 7398526, Japan
[2] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan
[3] Nagoya Univ, Grad Sch Engn, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan
[4] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan
基金
日本学术振兴会;
关键词
EMISSION;
D O I
10.1143/JJAP.51.046402
中图分类号
O59 [应用物理学];
学科分类号
摘要
A negative electron affinity GaAs photocathode electron source is characterized by high brightness, high quantum efficiency, and a moderate temporal response. The initial emittance depends on the mean transverse energy (MTE) of the electrons on the cathode surface. We evaluated the MTE based on emittance measurements obtained using the waist scan method with three types of cathodes: bulk GaAs, thickness-controlled samples with active-layer thicknesses of 100 and 1000 nm, and a GaAs/GaAsP superlattice sample. The dependence of the cathode quantum efficiency, the laser wavelength, and the thickness of the GaAs cathode active layer on the MTE are described. In the case of the bulk GaAs and the thickness-controlled samples, it was determined that the thickness and cathode quantum efficiency do not affect the MTE within the measurement error. The laser wavelength, on the other hand, affects the MTE of all cathodes. (C) 2012 The Japan Society of Applied Physics
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Analysis of negative electron affinity InGaN photocathode by temperature-programed desorption method
    Kashima, Masahiro
    Sato, Daiki
    Koizumi, Atsushi
    Nishitani, Tomohiro
    Honda, Yoshio
    Amano, Hiroshi
    Iijima, Hokuto
    Meguro, Takashi
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (06):
  • [42] The measurement of photocathode transverse energy distribution curves (TEDCs) using the transverse energy spread spectrometer (TESS) experimental system
    Jones, L. B.
    Juarez-Lopez, D. P.
    Scheibler, H. E.
    Terekhov, A. S.
    Militsyn, B. L.
    Welsch, C. P.
    Noakes, T. C. Q.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (11):
  • [43] Semiconductor Physics and Characteristics of Tunable Negative Electron Affinity Photocathode with High Quantum Efficiency
    Priyoti, Anika Tabassum
    Ahsan, Ragib
    Chae, Hyun Uk
    Vazquez, Juan Sanchez
    Kapadia, Rehan
    2024 JOINT INTERNATIONAL VACUUM ELECTRONICS CONFERENCE AND INTERNATIONAL VACUUM ELECTRON SOURCES CONFERENCE, IVEC + IVESC 2024, 2024,
  • [44] Negative electron affinity GaAs wire-array photocathodes
    Zou, Jijun
    Ge, Xiaowan
    Zhang, Yijun
    Deng, Wenjuan
    Zhu, Zhifu
    Wang, Weilu
    Peng, Xincun
    Chen, Zhaoping
    Chang, Benkang
    OPTICS EXPRESS, 2016, 24 (05): : 4632 - 4639
  • [45] SURFACE BAND BENDING IN GAAS WITH A NEGATIVE ELECTRON-AFFINITY
    KORINFSKII, AD
    MUSATOV, AL
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1986, 20 (02): : 205 - 206
  • [46] Enhanced chemical immunity for negative electron affinity GaAs photoemitters
    Mulhollan, G. A.
    Bierman, J. C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (05): : 1195 - 1197
  • [47] NEGATIVE ELECTRON AFFINITY GAAS - NEW SOURCE OF SPINPOLARIZED ELECTRONS
    PIERCE, DT
    MEIER, F
    ZURCHER, P
    APPLIED PHYSICS LETTERS, 1975, 26 (12) : 670 - 672
  • [48] Gradient-doping negative electron affinity GaAs photocathodes
    Zou, JJ
    Chang, BK
    OPTICAL ENGINEERING, 2006, 45 (05)
  • [49] Calculated electron energy distribution of negative electron affinity cathodes
    Vergara, G
    Herrera-Gómez, A
    Spicer, WE
    SURFACE SCIENCE, 1999, 436 (1-3) : 83 - 90
  • [50] Calculated electron energy distribution of negative electron affinity cathodes
    Vergara, G.
    Herrera-Gómez, A.
    Spicer, W.E.
    Surface Science, 1999, 436 (01): : 83 - 90