Influence of Cu Diffusion on Electrical Transport Properties of Bi0.5Sb1.5Te3

被引:2
|
作者
Chen, Song [1 ]
Wang, Xin [1 ]
Zou, Zhigang [1 ]
Cai, Kefeng [1 ]
机构
[1] Tongji Univ, Funct Mat Res Lab, Shanghai 200092, Peoples R China
来源
ENERGY AND ENVIRONMENT MATERIALS | 2013年 / 743-744卷
关键词
Bi0.5Sb1.5Te3; Electrical transport properties; Cu diffusion; Nanostructure; BI2TE3; COPPER;
D O I
10.4028/www.scientific.net/MSF.743-744.70
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bi0.5Sb1.5Te3 nanoplates from gas induced reduction (GIR) strategy were hot-pressed into bulk materials for thermoelectric properties investigation. During the electrical conductivity and Seebeck coefficient measurements, we found that the Cu from Cu electrodes diffused into samples when the measurement temperature was above 600 K. The phase composition and fracture surface of the samples before and after Cu diffusion were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). We found that the Cu diffusion resulted in the composition deviation and formation of impurity phase, Cu1.8Te. When the electrical conductivity and Seebeck coefficient of the samples were measured again but below 600 K, the samples showed different electrical transport behavior and had enhanced power factors.
引用
收藏
页码:70 / 75
页数:6
相关论文
共 50 条
  • [21] Optical and Optoelectronic Properties of Bi2Te3, Sb2Te3, and Bi0.5Sb1.5Te3 Flakes
    Jo, Hyeun Seung
    Kim, Ju Won
    Kim, Sang-il
    Kim, TaeWan
    KOREAN JOURNAL OF METALS AND MATERIALS, 2023, 61 (02): : 107 - 114
  • [22] Thermoelectric properties of Bi0.5Sb1.5Te3 ribbons prepared by melt spinning
    A. T. Burkov
    S. V. Novikov
    X. Tang
    Y. Yan
    Semiconductors, 2017, 51 : 1024 - 1026
  • [23] Preparation and Thermoelectric Properties of Ag-Dispersed Bi0.5Sb1.5Te3
    Kim, Il-Ho
    Choi, Soon-Mok
    Seo, Won-Seon
    Cheong, Dong-Ik
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (05) : 3660 - 3664
  • [24] Hydrothermal synthesis and thermoelectric properties of nanostructured Bi0.5Sb1.5Te3 compounds
    Zhang, Yanhua
    Xu, Guiying
    Mi, Jianli
    Han, Fei
    Wang, Ze
    Ge, Changchun
    MATERIALS RESEARCH BULLETIN, 2011, 46 (05) : 760 - 764
  • [25] Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites
    Blank, V. D.
    Buga, S. G.
    Kulbachinskii, V. A.
    Kytin, V. G.
    Medvedev, V. V.
    Popov, M. Yu.
    Stepanov, P. B.
    Skok, V. F.
    PHYSICAL REVIEW B, 2012, 86 (07):
  • [26] Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films
    Han, Xiaobin
    Zhang, Zhenyu
    Liu, Zhengmao
    Xu, Chao
    Lu, Xiaowei
    Sun, Lin
    Jiang, Peng
    APPLIED NANOSCIENCE, 2020, 10 (07) : 2375 - 2381
  • [27] Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films
    Xiaobin Han
    Zhenyu Zhang
    Zhengmao Liu
    Chao Xu
    Xiaowei Lu
    Lin Sun
    Peng Jiang
    Applied Nanoscience, 2020, 10 : 2375 - 2381
  • [28] Thermoelectric Properties of Bi0.5Sb1.5Te3 Prepared by the Ultrarapid Quenching Process
    Wei, Shaohong
    Chen, Hui
    Wang, Zhong
    Chu, Ying
    Zhu, Lei
    Jian, Xuyu
    Yu, Haijun
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 394 - 398
  • [29] Chemical Synthesis of Bi0.5Sb1.5Te3 Nanocrystals and Their Surface Oxidation Properties
    Zhao, Yixin
    Burda, Clemens
    ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (06) : 1259 - 1263
  • [30] Thermoelectric properties of Bi0.5Sb1.5Te3 ribbons prepared by melt spinning
    Burkov, A. T.
    Novikov, S. V.
    Tang, X.
    Yan, Y.
    SEMICONDUCTORS, 2017, 51 (08) : 1024 - 1026