Heterogeneous Multi-output Gaussian Process Prediction

被引:0
|
作者
Moreno-Munoz, Pablo [1 ]
Artes-Rodriguez, Antonio [1 ]
Alvarez, Mauricio A. [2 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid, Spain
[2] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel extension of multi-output Gaussian processes for handling heterogeneous outputs. We assume that each output has its own likelihood function and use a vector-valued Gaussian process prior to jointly model the parameters in all likelihoods as latent functions. Our multi-output Gaussian process uses a covariance function with a linear model of coregionalisation form. Assuming conditional independence across the underlying latent functions together with an inducing variable framework, we are able to obtain tractable variational bounds amenable to stochastic variational inference. We illustrate the performance of the model on synthetic data and two real datasets: a human behavioral study and a demographic high-dimensional dataset.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Battery Capacity Trajectory Prediction with Multi-output Gaussian Process
    Li, Jinwen
    Deng, Zhongwei
    Hu, Xiaosong
    [J]. 2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1916 - 1922
  • [2] Respiratory motion prediction using multi-output Gaussian process regression
    Omotayo, Azeez
    McCurdy, Boyd
    Venkataraman, Sankar
    [J]. MEDICAL PHYSICS, 2017, 44 (08) : 4385 - 4385
  • [3] Remarks on multi-output Gaussian process regression
    Liu, Haitao
    Cai, Jianfei
    Ong, Yew-Soon
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 144 : 102 - 121
  • [4] MOGPTK: The multi-output Gaussian process toolkit
    de Wolff, Taco
    Cuevas, Alejandro
    Tobar, Felipe
    [J]. NEUROCOMPUTING, 2021, 424 : 49 - 53
  • [5] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Chen, Zexun
    Wang, Bo
    Gorban, Alexander N.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3005 - 3028
  • [6] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Zexun Chen
    Bo Wang
    Alexander N. Gorban
    [J]. Neural Computing and Applications, 2020, 32 : 3005 - 3028
  • [7] Generalized multi-output Gaussian process censored regression
    Gammelli, Daniele
    Rolsted, Kasper Pryds
    Pacino, Dario
    Rodrigues, Filipe
    [J]. PATTERN RECOGNITION, 2022, 129
  • [8] Multi-output Gaussian process prediction for computationally expensive problems with multiple levels of fidelity
    Lin, Quan
    Hu, Jiexiang
    Zhou, Qi
    Cheng, Yuansheng
    Hu, Zhen
    Couckuyt, Ivo
    Dhaene, Tom
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [9] Modeling and prediction of driving performance measures based on multi-output convolutional Gaussian process
    Kasarla, Pranaykumar
    Wang, Chao
    Brown, Timothy L.
    McGehee, Daniel
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2021, 161
  • [10] Correction to: Multivariate Gaussian and Student-t process regression for multi-output prediction
    Zexun Chen
    Bo Wang
    Alexander N. Gorban
    [J]. Neural Computing and Applications, 2020, 32 : 11963 - 11963