A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam

被引:30
|
作者
Breuer, B
Horák, J
McKenna, PJ [1 ]
Pluma, M
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Karlsruhe, Math Inst 1, D-76218 Karlsruhe, Germany
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
travelling waves; existence; multiplicity; computer-assisted proof;
D O I
10.1016/j.jde.2005.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c = 1.3. This complements the result in [Smets, van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations, J. Differential Equations 184 (2002) 78-96.] stating that for almost all c is an element of (0, root 2) there exists at least one solution. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions "close to" the computed approximations. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 97
页数:38
相关论文
共 50 条
  • [21] A computer-assisted existence proof for Emden's equation on an unbounded L-shaped domain
    Pacella, Filomena
    Plum, Michael
    Ruetters, Dagmar
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)
  • [22] Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof
    Breden, Maxime
    Castelli, Roberto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (10) : 6418 - 6458
  • [23] A computer-assisted proof of the existence of traveling wave solutions to the scalar Euler equations with artificial viscosity
    Oswald Fogelklou
    Warwick Tucker
    Gunilla Kreiss
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 97 - 131
  • [24] Computer-assisted proof of performance ratios for the Differencing Method
    Michiels, W.
    Aarts, E.
    Korst, J.
    van Leeuwen, J.
    Spieksma, F. C. R.
    DISCRETE OPTIMIZATION, 2012, 9 (01) : 1 - 16
  • [25] Travelling waves in a nonlinearly suspended beam: some computational results and four open questions
    Chen, Y
    McKenna, PJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1732): : 2175 - 2184
  • [26] Computer-assisted beam modeling for particle therapy
    Fuchs, Hermann
    Elia, Alessio
    Resch, Andreas F.
    Kuess, Peter
    Luehr, Armin
    Vidal, Marie
    Grevillot, Loic
    Georg, Dietmar
    MEDICAL PHYSICS, 2021, 48 (02) : 841 - 851
  • [27] Mathematicians welcome computer-assisted proof in ‘grand unification’ theory
    Davide Castelvecchi
    Nature, 2021, 595 : 18 - 19
  • [28] A COMPUTER-ASSISTED PROOF OF UNIVERSALITY FOR AREA-PRESERVING MAPS
    ECKMANN, JP
    KOCK, H
    WITTWER, P
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 47 (289) : 1 - 122
  • [29] A computer-assisted proof of symbolic dynamics in Hyperion's rotation
    Gierzkiewicz, Anna
    Zgliczynski, Piotr
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (07):
  • [30] A computer-assisted proof of symbolic dynamics in Hyperion’s rotation
    Anna Gierzkiewicz
    Piotr Zgliczyński
    Celestial Mechanics and Dynamical Astronomy, 2019, 131