A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam

被引:30
|
作者
Breuer, B
Horák, J
McKenna, PJ [1 ]
Pluma, M
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Karlsruhe, Math Inst 1, D-76218 Karlsruhe, Germany
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
travelling waves; existence; multiplicity; computer-assisted proof;
D O I
10.1016/j.jde.2005.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c = 1.3. This complements the result in [Smets, van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations, J. Differential Equations 184 (2002) 78-96.] stating that for almost all c is an element of (0, root 2) there exists at least one solution. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions "close to" the computed approximations. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 97
页数:38
相关论文
共 50 条
  • [1] Travelling Waves in a Nonlinearly Supported Beam: A Computer-Assisted Existence and Multiplicity Proof
    Breuer, B.
    Horak, J.
    McKenna, P. J.
    Plum, M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 869 - +
  • [2] Orbital stability investigations for travelling waves in a nonlinearly supported beam
    Nagatou, K.
    Plum, M.
    McKenna, P. J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 268 (01) : 80 - 114
  • [3] A computer-assisted proof of existence of a periodic solution
    Miyaji, Tomoyuki
    Okamoto, Hisashi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (10) : 139 - 144
  • [4] A computer-assisted proof for the existence of horseshoe in a novel chaotic system
    Wu, Wen-Juan
    Chen, Zeng-Qiang
    Yuan, Zhu-Zhi
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2756 - 2761
  • [5] On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof
    Gomez-Serrano, Javier
    Granero-Belinchon, Rafael
    NONLINEARITY, 2014, 27 (06) : 1471 - 1498
  • [6] Computer-assisted discovery and proof
    Bailey, David H.
    Borwein, Jonathan M.
    TAPAS IN EXPERIMENTAL MATHEMATICS, 2008, 457 : 21 - +
  • [7] The existence of simple choreographies for the N-body problem -: a computer-assisted proof
    Kapela, T
    Zgliczynski, P
    NONLINEARITY, 2003, 16 (06) : 1899 - 1918
  • [8] A computer-assisted proof of the existence of Smale horseshoe for the folded-towel map
    Gierzkiewicz, Anna
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [9] GLOBAL EXISTENCE OF PERIODIC TRAVELLING WAVES OF AN INFINITE NON-LINEARLY SUPPORTED BEAM
    Furta, S.
    Piccione, P.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 31 - 41
  • [10] A COMPUTER-ASSISTED PROOF OF THE FEIGENBAUM CONJECTURES
    LANFORD, OE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) : 427 - 434