Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine

被引:247
|
作者
Meng, Jinhao [1 ]
Luo, Guangzhao [1 ]
Gao, Fei [2 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Univ Technol Belfort Montbeliard, F-90000 Belfort, France
基金
中国国家自然科学基金;
关键词
Adaptive unscented Kalman filter (AUKF); least-square support vector machine (LSSVM); Lithium polymer battery; modeling; moving window method; state of charge (SOC); ION BATTERY; PARAMETERIZATION; IDENTIFICATION; MANAGEMENT; MODEL;
D O I
10.1109/TPEL.2015.2439578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An accurate algorithm for lithium polymer battery state-of-charge (SOC) estimation is proposed based on adaptive unscented Kalman filters (AUKF) and least-square support vector machines (LSSVM). A novel approach using the moving window method is applied, with AUKF and LSSVM to accurately establish the battery model with limited initial training samples. The effectiveness of the moving window modeling method is validated by both simulations and lithium polymer battery experimental results. The measurement equation of the proposed AUKF method is established by the LSSVM battery model and AUKF has the advantage of adaptively adjusting noise covariance during the estimation process. In addition, the developed LSSVM model is continuously updated online with new samples during the battery operation, in order to minimize the influence of the changes in battery internal characteristics on modeling accuracy and estimation results after a period of operation. Finally, a comparison of accuracy and performance between the AUKF and UKF is made. Simulation and experiment results indicate that the proposed algorithm is capable of predicting lithium battery SOC with a limited number of initial training samples.
引用
收藏
页码:2226 / 2238
页数:13
相关论文
共 50 条
  • [1] State of charge estimation of lithium battery based on Dual Adaptive Unscented Kalman Filter
    Zhang, Peng
    Xie, Changjun
    Dong, Shibao
    [J]. 2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 2174 - 2179
  • [2] A Novel Battery State of Charge Estimation Based on the Joint Unscented Kalman Filter and Support Vector Machine Algorithms
    Xie, Fei
    Wang, Shunli
    Xie, Yanxin
    Fernandezb, Carlos
    Li, Xiaoxia
    Zou, Chuanyun
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (08): : 7935 - 7953
  • [3] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [4] State-of-Charge Estimation for Lithium-ion Battery using Busse's Adaptive Unscented Kalman Filter
    Yao, Low Wen
    Aziz, J. A.
    Idris, N. R. N.
    [J]. 2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 227 - 232
  • [5] Joint estimation of battery state-of-charge based on the genetic algorithm-adaptive unscented Kalman filter
    Hou Zhixiang
    Hou Jiqiang
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 14 (01) : 1 - 16
  • [6] Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter
    Hou, Jie
    Liu, Jiawei
    Chen, Fengwei
    Li, Penghua
    Zhang, Tao
    Jiang, Jincheng
    Chen, Xiaolei
    [J]. ENERGY, 2023, 271
  • [7] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    [J]. SUSTAINABILITY, 2021, 13 (09)
  • [8] Parallel Arithmetical Unscented Kalman Filter Technic for Lithium-ion Battery State-of-Charge Estimation
    Liu, Weilong
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    [J]. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), 2016, 96 : 669 - 675
  • [9] State-of-Charge Estimation of Lithium-ion Battery Based on a Combined Method of Neural Network and Unscented Kalman filter
    Hosseininasab, Seyedmehdi
    Wan, Zhiwen
    Bender, Tim
    Vagnoni, Giovanni
    Bauer, Lennart
    [J]. 2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [10] State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter
    Ma, Hongli
    Bao, Xinyuan
    Lopes, Antonio
    Chen, Liping
    Liu, Guoquan
    Zhu, Min
    [J]. BATTERIES-BASEL, 2024, 10 (06):