State-of-Charge Estimation for Lithium-ion Battery using Busse's Adaptive Unscented Kalman Filter

被引:0
|
作者
Yao, Low Wen [1 ]
Aziz, J. A. [1 ]
Idris, N. R. N. [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Dept Elect Power Engn, Power Elect Drive Res Grp, Skudai 81310, Johor, Malaysia
关键词
state-of-charge; adaptive unscented Kalman filter; lithium-ion battery; LEAD-ACID-BATTERIES; MANAGEMENT-SYSTEMS; ELECTRIC VEHICLES; PARAMETER-ESTIMATION; PART; MODEL; PACKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-of-charge estimation of rechargeable battery is vital to maximize the battery performance and ensure the safe operating condition. This paper presents state-of-charge estimation method for lithium-ion battery using adaptive unscented Kalman Filter. In this aspect, Busse's adaptive rule is implemented to update the process noise covariance of the Kalman filter. Compared with the existing adaptive rules, Busse's rule is relatively simpler and it doesn't require huge memory capacity for storing the voltage residual. The accuracy of the proposed method is verified through experimental studies. A comparison with the unscented Kalman filter algorithms is made to compare the accuracy of each algorithm.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [1] Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Battery Using Unscented Kalman Filter
    Partovibakhsh, Maral
    Liu, Guangjun
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 3962 - 3967
  • [2] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    [J]. 2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [3] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [4] Parallel Arithmetical Unscented Kalman Filter Technic for Lithium-ion Battery State-of-Charge Estimation
    Liu, Weilong
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    [J]. Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), 2016, 96 : 669 - 675
  • [5] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [6] State of Charge and parameters estimation for Lithium-ion battery using Dual Adaptive Unscented Kalman Filter
    Guo, Hongzhen
    Wang, Zhonghua
    Li, Yueyang
    Wang, Dongxue
    Wang, Guangying
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4962 - 4966
  • [7] Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter
    Hou, Jie
    Liu, Jiawei
    Chen, Fengwei
    Li, Penghua
    Zhang, Tao
    Jiang, Jincheng
    Chen, Xiaolei
    [J]. ENERGY, 2023, 271
  • [8] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    [J]. SUSTAINABILITY, 2021, 13 (09)
  • [9] State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter
    Ma, Hongli
    Bao, Xinyuan
    Lopes, Antonio
    Chen, Liping
    Liu, Guoquan
    Zhu, Min
    [J]. BATTERIES-BASEL, 2024, 10 (06):
  • [10] State-of-Charge Estimation of Lithium-ion Battery Based on a Combined Method of Neural Network and Unscented Kalman filter
    Hosseininasab, Seyedmehdi
    Wan, Zhiwen
    Bender, Tim
    Vagnoni, Giovanni
    Bauer, Lennart
    [J]. 2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,