Optimization of thermoacoustic refrigerator using response surface methodology

被引:22
|
作者
Hariharan, N. M. [1 ]
Sivashanmugam, P. [1 ]
Kasthurirengan, S. [2 ]
机构
[1] Natl Inst Technol, Dept Chem Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Indian Inst Sci, Ctr Cryogen Technol, Bangalore 560012, Karnataka, India
关键词
Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC); optimization; Response Surface Methodology (RSM); temperature difference; thermoacoustic refrigerator (TAR); DESIGN;
D O I
10.1016/S1001-6058(13)60340-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.
引用
收藏
页码:72 / 82
页数:11
相关论文
共 50 条
  • [31] Design methodology of standing-wave thermoacoustic refrigerator: theoretical analysis
    Mohanad Q. Kamil
    Samir Gh. Yahya
    Itimad D. J. Azzawi
    [J]. International Journal of Air-Conditioning and Refrigeration, 31
  • [32] Frequency Tuning Algorithm for Loudspeaker Driven Thermoacoustic Refrigerator Optimization
    Kondratenko, Yuriy P.
    Korobko, Oleksiy
    Kozlov, Oleksiy V.
    [J]. MODELING AND SIMULATION IN ENGINEERING, ECONOMICS, AND MANAGEMENT, MS 2012, 2012, 115 : 270 - 279
  • [33] SIMULTANEOUS OPTIMIZATION OF FOUR PARAMETERS IN THE STACK UNIT OF A THERMOACOUSTIC REFRIGERATOR
    Zolpakar, Nor Atiqah
    Mohd-Ghazali, Normah
    Ahmad, Robiah
    [J]. INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2014, 22 (02)
  • [34] Optimization of Vegetal Pear Drying Using Response Surface Methodology
    Perez-Francisco, J. M.
    Cerecero-Enriquez, R.
    Andrade-Gonzalez, I.
    Ragazzo-Sanchez, J. A.
    Luna-Solano, G.
    [J]. DRYING TECHNOLOGY, 2008, 26 (11) : 1401 - 1405
  • [35] Aintshop production line optimization using Response Surface Methodology
    Dengiz, Berna
    Belgin, Onder
    [J]. PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 1646 - 1651
  • [36] FOREBODY OPTIMIZATION USING RESPONSE SURFACE METHODOLOGY WITH GENETIC ALGORITHM
    Kandemir, Omer
    Tuncer, Ismail H.
    [J]. PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 6, 2021,
  • [37] Design and optimization of a siphon turbine using the response surface methodology
    Guerra, Juliana
    Velasquez, Laura
    Rubio-Clemente, Ainhoa
    Jaramillo, Leyla
    Chica, Edwin
    [J]. RESULTS IN ENGINEERING, 2024, 22
  • [38] Experimental optimization of deep drawing using response surface methodology
    Chu, Tsuhsiao
    Fuh, Kuanghua
    Yeh, Weiching
    [J]. FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 1495 - +
  • [39] Optimization of Milk Sample Cleanup Using Response Surface Methodology
    Lucas Ulisses Rovigatti Chiavelli
    Antonio Cesar Godoy
    Roberta da Silveira
    Patricia Daniele Silva Santos
    Tiago A. M. Lopes
    Oscar Oliveira Santos
    Jesuí Vergílio Visentainer
    [J]. Food Analytical Methods, 2020, 13 : 166 - 175
  • [40] Optimization of osmotic dehydration of potato using response surface methodology
    Eren, Ismail
    Kaymak-Ertekin, Figen
    [J]. JOURNAL OF FOOD ENGINEERING, 2007, 79 (01) : 344 - 352