Scalable Fabrication of Si-Graphene Composite as Anode for Li-ion Batteries

被引:7
|
作者
Lou, Ding [1 ]
Chen, Shuyi [2 ]
Langrud, Strauss [3 ]
Razzaq, Amir Abdul [3 ]
Mao, Mingyang [1 ]
Younes, Hammad [4 ]
Xing, Weibing [3 ]
Lin, Tim [2 ,5 ]
Hong, Haiping [4 ]
机构
[1] South Dakota Sch Mines & Technol, Dept Nanosci & Nanoengn, Rapid City, SD 57701 USA
[2] Solid Energies Inc, 985 E Orangefair Ln, Anaheim, CA 92801 USA
[3] South Dakota Sch Mines & Technol, Dept Mech Engn, Energy Storage Lab, Rapid City, SD 57701 USA
[4] South Dakota Sch Mines & Technol, Dept Elect Engn, Rapid City, SD 57701 USA
[5] Bioenno Tech LLC, 3657 McFadden Ave, Santa Ana, CA 92704 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 21期
关键词
Si-graphene electrode; Li-ion batteries; anode; scalable; HIGH-CAPACITY ANODES; CARBON NANOTUBES; SILICON ANODE; NANOPARTICLES; NANOSHEETS; MEMBRANE; OXIDE;
D O I
10.3390/app122110926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile and scalable method is reported to fabricate Si-graphene nanocomposite as anode material for Li-ion batteries (LIBs) with high capacity and capacity retention performance. The Si-graphene electrode showed an initial discharge capacity of 1307 mAh g(-1) at a current rate of 0.1C. At the 25th cycle, the electrode retained a discharge capacity of 1270 mAh g(-1), with an excellent capacity retention of 97%. At the 50th cycle, the electrode still retained high capacity retention of 89%. The improved capacity retention of Si-graphene anode compared with Si anode is attributed to the mechanical flexibility of graphene that compromises the volume expansion of Si during the lithiation/delithiation process. The electrochemical impedance measurement further confirms the enhanced electrical conductivity and the denser solid-electrolyte-interface of the Si-graphene electrode. This fabrication approach is cost-effective and easy to scale up compared to known techniques, making it a promising candidate for commercializing Si-based anode for LIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Effect of binders on performance of Si/C composite as anode for Li-ion batteries
    Mingru Su
    Shuai Liu
    Huafeng Wan
    Aichun Dou
    Ke Liu
    Yunjian Liu
    Ionics, 2019, 25 : 2103 - 2109
  • [12] Effect of binders on performance of Si/C composite as anode for Li-ion batteries
    Su, Mingru
    Liu, Shuai
    Wan, Huafeng
    Dou, Aichun
    Liu, Ke
    Liu, Yunjian
    IONICS, 2019, 25 (05) : 2103 - 2109
  • [13] Improvement of cyclability of Si as anode for Li-ion batteries
    Ding, Ning
    Xu, Jing
    Yao, Yaxuan
    Wegner, Gerhard
    Lieberwirth, Ingo
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 644 - 651
  • [14] Supersonic cold-sprayed Si composite alloy as anode for Li-ion batteries
    Lou, Ding
    Hong, Haiping
    Ellingsen, Marius
    Hrabe, Rob
    APPLIED PHYSICS LETTERS, 2023, 122 (02)
  • [15] Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    Journal of Alloys and Compounds, 2006, 426 (1-2): : 277 - 280
  • [16] Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 426 (1-2) : 277 - 280
  • [17] Si/MgO composite anodes for Li-ion batteries
    CHEN Jingbo a
    RareMetals, 2011, 30 (02) : 166 - 169
  • [18] Si/MgO composite anodes for Li-ion batteries
    Chen Jingbo
    Zhao Hailei
    He Jianchao
    Wang Jing
    RARE METALS, 2011, 30 (02) : 166 - 169
  • [19] Si/MgO composite anodes for Li-ion batteries
    Jingbo Chen
    Hailei Zhao
    Jianchao He
    Jing Wang
    Rare Metals, 2011, 30 : 166 - 169
  • [20] Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries
    Liang, Xianqing
    Wang, Junjie
    Zhang, Siyu
    Wang, Luyang
    Wang, Weifang
    Li, Liuyan
    Wang, Haifu
    Huang, Dan
    Zhou, Wenzheng
    Guo, Jin
    APPLIED SURFACE SCIENCE, 2019, 476 : 28 - 35