Generalization of common gates for quantum computation

被引:0
|
作者
Ralescu, A [1 ]
Mayfield, L [1 ]
机构
[1] Univ Cincinnati, Dept Elect & Comp Engn & Comp Sci, Cincinnati, OH 45221 USA
关键词
D O I
10.1109/NAFIPS.2005.1548607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As problems in computer science become increasingly more computationally intense, researchers have begun to examine other methods of computation. One of the largest new models of computation is the quantum computer. Based on the concepts of quantum mechanics, quantum computers process bits of quantum information, or qubits, using quantum gates. So far some impressive results have been obtained using quantum computers on current problems (e.g. search problems). Many quantum algorithms make use of the Hadamard Gate, and a few use a more general form of that gate. In this paper we present a generalized quantum gate that can be shown to encapsulate the standard gates used in quantum algorithms and quantum information processing: Pauli X, Y, and Z, Hadamard, T Phase Shift, S Phase Shift, and Identity. This generalized gate may also lead to new, interesting, and useful gates for quantum computation.
引用
收藏
页码:611 / 614
页数:4
相关论文
共 50 条
  • [31] 2-BIT GATES ARE UNIVERSAL FOR QUANTUM COMPUTATION
    DIVINCENZO, DP
    [J]. PHYSICAL REVIEW A, 1995, 51 (02): : 1015 - 1022
  • [32] Controlled gates for multi-level quantum computation
    Mohammadi, Majid
    Niknafs, Aliakbar
    Eshghi, Mohammad
    [J]. QUANTUM INFORMATION PROCESSING, 2011, 10 (02) : 241 - 256
  • [33] Braid matrices and quantum gates for Ising anyons topological quantum computation
    Fan, Z.
    de Garis, H.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (03): : 419 - 427
  • [34] Quantum origami: Transversal gates for quantum computation and measurement of topological order
    Zhu, Guanyu
    Hafezi, Mohammad
    Barkeshli, Maissam
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [35] Universal quantum computation by holonomic and nonlocal gates with imperfections
    [J]. Ellinas, D. (ellinas@science.tuc.gr), 2001, American Institute of Physics Inc. (64):
  • [36] Efficient implementation of coupled logic gates for quantum computation
    Leung, DW
    Chuang, IL
    Yamaguchi, F
    Yamamoto, Y
    [J]. PHYSICAL REVIEW A, 2000, 61 (04): : 7
  • [37] Fault-tolerant quantum computation with local gates
    Gottesman, D
    [J]. JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 333 - 345
  • [38] Nonlinear coherent excitonic solid gates for quantum computation
    Matsueda, H
    Takeno, S
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (09): : 1610 - 1615
  • [39] Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation
    Wang, B.
    Duan, L.-M.
    [J]. PHYSICAL REVIEW A, 2007, 75 (05):
  • [40] Fault-tolerant quantum computation with nondeterministic entangling gates
    Auger, James M.
    Anwar, Hussain
    Gimeno-Segovia, Mercedes
    Stace, Thomas M.
    Browne, Dan E.
    [J]. PHYSICAL REVIEW A, 2018, 97 (03)