A subspace hierarchical clustering algorithm for categorical data

被引:1
|
作者
Carbonera, Joel Luis [1 ]
Abel, Mara [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil
关键词
K-MEANS;
D O I
10.1109/ICTAI.2019.00077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a soft subspace hierarchical clustering for dealing with categorical data. The proposed algorithm extends the traditional agglomerative hierarchical clustering approach for identifying clusters of categorical data in subspaces. The algorithm adopts a correlation-based approach for measuring the relevance of each categorical attribute during the clustering process. We performed experiments on six well-known datasets, comparing the performance of our algorithms with the original agglomerative algorithm for hierarchical clustering and other five partitional subspace clustering algorithms, using two well-known evaluation metrics: accuracy and f-measure. According to the experiments, the proposed algorithm outperforms the original one. Besides that, the proposed algorithm outperforms most of the partitional algorithms, while provides additional advantages.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 50 条
  • [21] Self-Expressive Kernel Subspace Clustering Algorithm for Categorical Data with Embedded Feature Selection
    Chen, Hui
    Xu, Kunpeng
    Chen, Lifei
    Jiang, Qingshan
    [J]. MATHEMATICS, 2021, 9 (14)
  • [22] Rough subspace-based clustering ensemble for categorical data
    Can Gao
    Witold Pedrycz
    Duoqian Miao
    [J]. Soft Computing, 2013, 17 : 1643 - 1658
  • [23] Rough subspace-based clustering ensemble for categorical data
    Gao, Can
    Pedrycz, Witold
    Miao, Duoqian
    [J]. SOFT COMPUTING, 2013, 17 (09) : 1643 - 1658
  • [24] Subspace Clustering of Categorical and Numerical Data With an Unknown Number of Clusters
    Jia, Hong
    Cheung, Yiu-Ming
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (08) : 3308 - 3325
  • [25] Comparison of Similarity Measures for Categorical Data in Hierarchical Clustering
    Zdeněk Šulc
    Hana Řezanková
    [J]. Journal of Classification, 2019, 36 : 58 - 72
  • [26] Comparison of Similarity Measures for Categorical Data in Hierarchical Clustering
    Sulc, Zdenek
    Rezankova, Hana
    [J]. JOURNAL OF CLASSIFICATION, 2019, 36 (01) : 58 - 72
  • [27] Model-Based Hierarchical Clustering for Categorical Data
    Alalyan, Fahdah
    Zamzami, Nuha
    Bouguila, Nizar
    [J]. 2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1424 - 1429
  • [28] Squeezer: An efficient algorithm for clustering categorical data
    He, ZY
    Xu, XF
    Deng, SC
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2002, 17 (05) : 611 - 624
  • [29] Coercion: A Distributed Clustering Algorithm for Categorical Data
    Wang, Bin
    Zhou, Yang
    Hei, Xinhong
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 683 - 687
  • [30] A CLUSTERING ALGORITHM FOR MIXED NUMERIC AND CATEGORICAL DATA
    Ohn Mar San
    Van-Nam Huynh
    Yoshiteru Nakamori
    [J]. Journal of Systems Science & Complexity, 2003, (04) : 562 - 571