A Tribute to Disorder in the Genome of the Bloom-Forming Freshwater Cyanobacterium Microcystis aeruginosa

被引:126
|
作者
Humbert, Jean-Francois [1 ]
Barbe, Valerie [2 ]
Latifi, Amel [3 ]
Gugger, Muriel [1 ]
Calteau, Alexandra [4 ]
Coursin, Therese [1 ]
Lajus, Aurelie [4 ]
Castelli, Vanina [2 ]
Oztas, Sophie [2 ]
Samson, Gaelle [2 ]
Longin, Cyrille [4 ]
Medigue, Claudine [4 ]
de Marsac, Nicole Tandeau [1 ,3 ]
机构
[1] Inst Pasteur, CNRS, Unite Rech Associee 2172, Unite Cyanobacteries, Paris, France
[2] Commissariat Energie Atom & Energies Alternat Gen, Inst Genom, Evry, France
[3] Aix Marseille Univ, CNRS, Lab Chim Bacterienne, Unite Mixte Rech 7283, Marseille, France
[4] CNRS, Commissariat Energie Atom & Energies Alternat Gen, Lab Anal Bioinformat Genom & Metab, Unite Mixte Rech 8030, Evry, France
来源
PLOS ONE | 2013年 / 8卷 / 08期
关键词
NONRIBOSOMAL PEPTIDE SYNTHETASE; TOXIC CYANOBACTERIUM; GENETIC DIVERSITY; PROCHLOROCOCCUS; EVOLUTION; ECOLOGY; BIOSYNTHESIS; POPULATIONS; POLYKETIDE; PHYSIOLOGY;
D O I
10.1371/journal.pone.0070747
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microcystis aeruginosa is one of the most common bloom-forming cyanobacteria in freshwater ecosystems worldwide. This species produces numerous secondary metabolites, including microcystins, which are harmful to human health. We sequenced the genomes of ten strains of M. aeruginosa in order to explore the genomic basis of their ability to occupy varied environments and proliferate. Our findings show that M. aeruginosa genomes are characterized by having a large open pangenome, and that each genome contains similar proportions of core and flexible genes. By comparing the GC content of each gene to the mean value of the whole genome, we estimated that in each genome, around 11% of the genes seem to result from recent horizontal gene transfer events. Moreover, several large gene clusters resulting from HGT (up to 19 kb) have been found, illustrating the ability of this species to integrate such large DNA molecules. It appeared also that all M. aeruginosa displays a large genomic plasticity, which is characterized by a high proportion of repeat sequences and by low synteny values between the strains. Finally, we identified 13 secondary metabolite gene clusters, including three new putative clusters. When comparing the genomes of Microcystis and Prochlorococcus, one of the dominant picocyanobacteria living in marine ecosystems, our findings show that they are characterized by having almost opposite evolutionary strategies, both of which have led to ecological success in their respective environments.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843
    Kaneko, Takakazu
    Nakajima, Nobuyoshi
    Okamoto, Shinobu
    Suzuki, Iwane
    Tanabe, Yuuhiko
    Tamaoki, Masanori
    Nakamura, Yasukazu
    Kasai, Fumie
    Watanabe, Akiko
    Kawashima, Kumiko
    Kishida, Yoshie
    Ono, Akiko
    Shimizu, Yoshimi
    Takahashi, Chika
    Minami, Chiharu
    Fujishiro, Tsunakazu
    Kohara, Mitsuyo
    Katoh, Midori
    Nakazaki, Naomi
    Nakayama, Shinobu
    Yamada, Manabu
    Tabatai, Satoshi
    Watanabe, Makoto M.
    [J]. DNA RESEARCH, 2007, 14 (06) : 247 - 256
  • [32] Photosynthesis Inhibition of Pyrogallol Against the Bloom-Forming Cyanobacterium Microcystis aeruginosa TY001
    Wang, Jie
    Liu, Qi
    Feng, Jia
    Lv, Junping
    Xie, Shulian
    [J]. POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2016, 25 (06): : 2601 - 2608
  • [33] Occurrence of mycosporine-like amino acids (MAAs) in the bloom-forming cyanobacterium Microcystis aeruginosa
    Liu, ZW
    Häder, DP
    Sommaruga, R
    [J]. JOURNAL OF PLANKTON RESEARCH, 2004, 26 (08) : 963 - 966
  • [34] Isolation and Characterization of Bacterial Isolates Algicidal against a Harmful Bloom-forming Cyanobacterium Microcystis aeruginosa
    Yang Li
    Wei Hongyi
    Komatsu, Masaharu
    Ishibashi, Kenichi
    Lin Jinsan
    Ito, Tatsuo
    Yoshikawa, Takeshi
    Maeda, Hiroto
    [J]. BIOCONTROL SCIENCE, 2012, 17 (03) : 107 - 114
  • [35] Diversification of CRISPR within coexisting genotypes in a natural population of the bloom-forming cyanobacterium Microcystis aeruginosa
    Kuno, Sotaro
    Sako, Yoshihiko
    Yoshida, Takashi
    [J]. MICROBIOLOGY-SGM, 2014, 160 : 903 - 916
  • [36] Cultivation and Characterization of the MaMV-DC Cyanophage that Infects Bloom-forming Cyanobacterium Microcystis aeruginosa
    Tong Ou
    Sanhua Li
    Xiangyong Liao
    Qiya Zhang
    [J]. Virologica Sinica, 2013, (05) : 266 - 271
  • [37] Cultivation and Characterization of the MaMV-DC Cyanophage that Infects Bloom-forming Cyanobacterium Microcystis aeruginosa
    Tong Ou
    Sanhua Li
    Xiangyong Liao
    Qiya Zhang
    [J]. Virologica Sinica, 2013, 28 (05) : 266 - 271
  • [38] Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa
    Sabart, Marion
    Pobel, David
    Latour, Delphine
    Robin, Joel
    Salencon, Marie-J.
    Humbert, Jean-F.
    [J]. ENVIRONMENTAL MICROBIOLOGY REPORTS, 2009, 1 (04): : 263 - 272
  • [39] The extract of aquatic macrophyte Carex cinerascens induced colony formation in bloom-forming cyanobacterium Microcystis aeruginosa
    Lin Li
    Xiao-ling Jing
    Ling Wang
    Zhi-gao Zeng
    Wen-hong Chen
    Jia-hao Zhai
    Si-qin Qi
    [J]. Environmental Science and Pollution Research, 2020, 27 : 42276 - 42282
  • [40] The extract of aquatic macrophyte Carex cinerascens induced colony formation in bloom-forming cyanobacterium Microcystis aeruginosa
    Li, Lin
    Jing, Xiao-ling
    Wang, Ling
    Zeng, Zhi-gao
    Chen, Wen-hong
    Zhai, Jia-hao
    Qi, Si-qin
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (34) : 42276 - 42282