Overexpression of NADH-dependent fumarate reductase improves d-xylose fermentation in recombinant Saccharomyces cerevisiae

被引:11
|
作者
Salusjarvi, Laura [1 ]
Kaunisto, Sanna [1 ]
Holmstrom, Sami [1 ]
Vehkomaki, Maija-Leena [1 ]
Koivuranta, Kari [1 ]
Pitkanen, Juha-Pekka [1 ]
Ruohonen, Laura [1 ]
机构
[1] Tech Res Ctr Finland, VTT, Espoo 02044, Finland
基金
芬兰科学院;
关键词
Fumarate reductase; NADH-kinase; Saccharomyces cerevisiae; NADH; NADPH; D-Xylose; Metabolic engineering; D-Xylose fermentation; ETHANOL-PRODUCTION; XYLITOL DEHYDROGENASE; PICHIA-STIPITIS; FUNCTIONAL EXPRESSION; TRYPANOSOMA-BRUCEI; REDOX BALANCES; KINASE; METABOLISM; GLUCOSE; GENE;
D O I
10.1007/s10295-013-1344-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of d-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in d-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5 Delta 17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5 Delta 17 resulted in 60 and 23 % increase in ethanol yield, respectively, on d-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic d-xylose and d-glucose metabolism are discussed.
引用
收藏
页码:1383 / 1392
页数:10
相关论文
共 50 条
  • [21] d-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae
    Jeroen G. Nijland
    Xiaohuan Zhang
    Arnold J. M. Driessen
    Biotechnology for Biofuels and Bioproducts, 16
  • [22] Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae
    Lee, WJ
    Kim, MD
    Yoo, MS
    Ryu, YW
    Seo, JH
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 13 (05) : 725 - 730
  • [23] Identification and Characterization of an Efficient D-Xylose Transporter in Saccharomyces cerevisiae
    Jiang, Yi
    Shen, Yu
    Gu, Lichuan
    Wang, Zhenzhen
    Su, Ning
    Niu, Kangle
    Guo, Wei
    Hou, Shaoli
    Bao, Xiaoming
    Tian, Chaoguang
    Fang, Xu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (09) : 2702 - 2710
  • [24] d-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae
    Nijland, Jeroen G.
    Zhang, Xiaohuan
    Driessen, Arnold J. M.
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):
  • [25] D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers
    Brink, Daniel P.
    Borgstrom, Celina
    Persson, Viktor C.
    Ofuji Osiro, Karen
    Gorwa-Grauslund, Marie F.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [26] Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    Ishii, Jun
    Yoshimura, Kazuya
    Hasunuma, Tomohisa
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (06) : 2597 - 2607
  • [27] Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    Hector, Ronald E.
    Dien, Bruce S.
    Cotta, Michael A.
    Mertens, Jeffrey A.
    BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [28] Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    Ronald E Hector
    Bruce S Dien
    Michael A Cotta
    Jeffrey A Mertens
    Biotechnology for Biofuels, 6
  • [29] Decreased Xylitol Formation during Xylose Fermentation in Saccharomyces cerevisiae Due to Overexpression of Water-Forming NADH Oxidase
    Zhang, Guo-Chang
    Liu, Jing-Jing
    Ding, Wen-Tao
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (04) : 1081 - 1086
  • [30] A constitutive catabolite repression mutant of a recombinant Saccharomyces cerevisiae strain improves xylose consumption during fermentation
    Gururajan, Vasudevan Thanvanthri
    Gorwa-Grauslund, Marie-F.
    Hahn-Hagerdal, Barbel
    Pretorius, Isak S.
    Otero, Ricardo R. Cordero
    ANNALS OF MICROBIOLOGY, 2007, 57 (01) : 85 - 92