Plasmonic responses of metallic/dielectric core-shell nanoparticles on a dielectric substrate

被引:18
|
作者
Avsar, Dilan [1 ]
Erturk, Hakan [1 ]
Menguc, M. Pinar [2 ]
机构
[1] Bogazici Univ, Dept Mech Engn, Istanbul, Turkey
[2] Ozyegin Univ, CEEE, Istanbul, Turkey
来源
MATERIALS RESEARCH EXPRESS | 2019年 / 6卷 / 06期
关键词
localized surface plasmon resonance; core-shell nanoparticles; hybridization of plasmonic response; discrete dipole approximation with surface interactions; surface evanescent waves; nano-manufacturing; DISCRETE-DIPOLE APPROXIMATION; SURFACE INTERACTION; GOLD NANOPARTICLES; ABSORPTION; SCATTERING; PARTICLES; THERAPY; PROBE; GAP;
D O I
10.1088/2053-1591/ab07fd
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of material selection on the plasmonic response and local absorption are evaluated for core- shell nanoparticles placed over a BK7 glass substrate. Eight different core-shell pairs are studied using the vectorized version of discrete dipole approximation with surface interactions (DDA-SI). Two classes of dielectric core-metallic shell and metallic core-dielectric shell particles are considered. It is shown that core-shell structures with dielectric materials can have absorption enhancement compared to the bare metallic nanoparticles. Moreover, it is observed that core-shell pairs yield multipeak localized surface plasmon resonance (LSPR) response due to their hybrid structure. Absorption enhancement and LSPR tuning ranges are shown with different dielectric materials that can be used in localized heating of designated core-shell NPs placed over a surface for nanomanufacturing purposes. In order to determine the optimum size configurations, a number of core-shell pairs are explored with specified volumetric filling ratio of core materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Enhanced Heat Transfer with Metal-Dielectric Core-Shell Nanoparticles
    Alkurdi, Ali
    Lombard, Julien
    Detcheverry, Francois
    Merabia, Samy
    [J]. PHYSICAL REVIEW APPLIED, 2020, 13 (03)
  • [22] Magnetic-Plasmonic Core-Shell Nanoparticles
    Levin, Carly S.
    Hofmann, Cristina
    Ali, Tamer A.
    Kelly, Anna T.
    Morosan, Emilia
    Nordlander, Peter
    Whitmire, Kenton H.
    Halas, Naomi J.
    [J]. ACS NANO, 2009, 3 (06) : 1379 - 1388
  • [23] Critical Role of Shell in Enhanced Fluorescence of Metal-Dielectric Core-Shell Nanoparticles
    Sun, Song
    Rasskazov, Ilia L.
    Carney, P. Scott
    Zhang, Taiping
    Moroz, Alexander
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (24): : 13365 - 13373
  • [24] Plasmonic enhancement using core-shell nanoparticles
    Stranik, O
    Nooney, R
    McDonagh, C
    MacCraith, BD
    [J]. Opto-Ireland 2005: Nanotechnology and Nanophotonics, 2005, 5824 : 79 - 85
  • [25] Metal–Dielectric Core–Shell Nanoparticles
    N. V. Selina
    [J]. Nanotechnologies in Russia, 2019, 14 : 451 - 455
  • [26] Nonlocal Dielectric Effects in Core-Shell Nanowires
    McMahon, Jeffrey M.
    Gray, Stephen K.
    Schatz, George C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (38): : 15903 - 15908
  • [27] POLARIZATION OF CHARGED SPHERICAL DIELECTRIC CORE-SHELL
    Marin, A.
    Ianc, O.
    Cheche, T. O.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2023, 68 (1-2):
  • [28] Morphological instability of core-shell metallic nanoparticles
    Bochicchio, Davide
    Ferrando, Riccardo
    [J]. PHYSICAL REVIEW B, 2013, 87 (16)
  • [29] Modelling metal-dielectric core-shell nanoparticles with effective medium theories
    Gutierrez, Y.
    Ortiz, D.
    Alcaraz de la Osa, R.
    Sanz, J. M.
    Saiz, J. M.
    Gonzalez, F.
    Moreno, F.
    [J]. THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2017, 10453
  • [30] Broadband zero backward scattering by all-dielectric core-shell nanoparticles
    Li, Runmin
    Zhou, Xin
    Panmai, Mingcheng
    Xiang, Jin
    Liu, Haiying
    Ouyang, Min
    Fan, Haihua
    Dai, Qiaofeng
    Wei, Zhongchao
    [J]. OPTICS EXPRESS, 2018, 26 (22): : 28891 - 28901