Strong non-equilibrium quasi-stationary model for dissociation-recombination in expanding flows.

被引:0
|
作者
Chikhaoui, A [1 ]
Nagnibeda, EA [1 ]
Kustova, EV [1 ]
Alexandrova, TY [1 ]
机构
[1] Univ Aix Marseille 1, IUSTI, MHEQ, F-13453 Marseille, France
来源
RAREFIED GAS DYNAMICS | 2001年 / 585卷
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A quasi-stationary model for dissociation, recombination and vibrational kinetics in expanding flows is presented. The model is based on strongly nonequilibrium vibrational distributions different rom the Boltzmann and Treanor ones. Different mechanism of energy exchanges at low, middle and high vibrational levels is taken into account. The equations of nonequilibrium gas dynamics are derived and applied to nozzle flows of (N(2), N) and (O(2), O) gas mixtures. The gas parameters and vibrational distributions in the nozzle are computed and compared with the ones obtained using approximate models and the influence of kinetic models on flow parameters is investigated.
引用
收藏
页码:613 / 619
页数:7
相关论文
共 50 条
  • [21] Scalar Forces/Fluxes and Reciprocity Relations in Flows with Strong Thermal and Chemical Non-Equilibrium
    Kustova, E. V.
    [J]. 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 1078 - 1085
  • [22] Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model
    Zhang, Yudong
    Xu, Aiguo
    Zhang, Guangcai
    Chen, Zhihua
    Wang, Pei
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2019, 238 : 50 - 65
  • [23] Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows
    Meng, Jianping
    Zhang, Yonghao
    Hadjiconstantinou, Nicolas G.
    Radtke, Gregg A.
    Shan, Xiaowen
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 718 : 347 - 370
  • [24] Half moment model to take into account strong kinetic non-equilibrium
    Dubroca, B
    Klar, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 335 (08) : 699 - 704
  • [25] AN OPEN MICROSCOPIC MODEL OF HEAT CONDUCTION: EVOLUTION AND NON-EQUILIBRIUM STATIONARY STATES
    Komorowski, Tomasz
    Olla, Stefano
    Simon, Marielle
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (03) : 751 - 780
  • [26] LIMIT-CYCLE IN A BOUND EXCITON RECOMBINATION MODEL IN NON-EQUILIBRIUM SEMICONDUCTORS
    PIMPALE, A
    LANDSBERG, PT
    BONILLA, LL
    VELARDE, MG
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1981, 42 (10) : 873 - 881
  • [27] Non-Iterative Wall Model Formula for Non-Equilibrium Boundary Layer Flows
    Jemcov, Aleksandar
    Gonzales, Joseph P.
    Maruszewski, Joseph P.
    Kelly, Ryan T.
    [J]. FME TRANSACTIONS, 2022, 50 (02): : 223 - 237
  • [28] PHASE-TRANSITIONS IN STATIONARY NON-EQUILIBRIUM STATES OF MODEL LATTICE SYSTEMS
    KATZ, S
    LEBOWITZ, JL
    SPOHN, H
    [J]. PHYSICAL REVIEW B, 1983, 28 (03): : 1655 - 1658
  • [29] Analysis of high speed non-equilibrium chemically reacting gas flows. Part II. A finite volume/finite element model and numerical studies
    Harle, C
    Carey, GF
    Varghese, PL
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 32 (06) : 691 - 709
  • [30] Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows
    Dong, Wei-Zhong
    Gao, Tie-Suo
    Ding, Ming-Song
    [J]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2007, 25 (01): : 1 - 6