Land Use Regression Models for Ultrafine Particles and Black Carbon Based on Short-Term Monitoring Predict Past Spatial Variation
被引:77
|
作者:
Montagne, Denise R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, NetherlandsUniv Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Montagne, Denise R.
[1
]
Hoek, Gerard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, NetherlandsUniv Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Hoek, Gerard
[1
]
Klompmaker, Jochem O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, NetherlandsUniv Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Klompmaker, Jochem O.
[1
]
Wang, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, NetherlandsUniv Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Wang, Meng
[1
]
Meliefste, Kees
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, NetherlandsUniv Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Meliefste, Kees
[1
]
Brunekreef, Bert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Univ Utrecht, Univ Med Ctr, Julius Ctr Hlth Sci & Primary Care, NL-3584 CK Utrecht, NetherlandsUniv Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
Brunekreef, Bert
[1
,2
]
机构:
[1] Univ Utrecht, Div Environm Epidemiol, IRAS, NL-3584 CK Utrecht, Netherlands
[2] Univ Utrecht, Univ Med Ctr, Julius Ctr Hlth Sci & Primary Care, NL-3584 CK Utrecht, Netherlands
Health effects of long-term exposure to ultrafine particles (UFP) have not been investigated in epideminlogical studies because of the lack of spatially resolved UFP exposure data. Short-term monitoring campaigns used to develop land use regression (LUR) models for UFP typically had moderate performance. The aim of this study was to develop and evaluate spatial and spatiotemporal LUR models for UFP and Black Carbon (BC), including their ability to predict past spatial contrasts. We measured 30 min at each of 81 sites in Amsterdam and 80 in Rotterdam, The Netherlands in three different seasons. Models were developed using traffic, land use, reference site measurements, routinely measured pollutants and weather data. The percentage explained variation (R-2) was 0.35-0.40 for BC and 0.33-0.42 for UFP spatial models. Traffic variables were present in every model. The coefficients for the spatial predictors were similar in spatial and spatiotemporal models: The BC LUR model explained 61% of The spatial variation in a previous campaign with longer sampling duration, better than the Model R-2. The UFP LUR model explained 36% of UFP-spatial variation measured 10 years earlier, similar to the Model R-2. Short-term monitoring campaigns may be an efficient tool to develop LUR models.
机构:
East China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
Inst Ecochongming IEC, Shanghai 200062, Peoples R ChinaEast China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
Liu, Min
Peng, Xia
论文数: 0引用数: 0
h-index: 0
机构:
Lib East China Normal Univ, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
Peng, Xia
Meng, Ziqi
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
Meng, Ziqi
Zhou, Taoye
论文数: 0引用数: 0
h-index: 0
机构:
Pudong New Area Environm Monitoring Stn, Shanghai 200135, Peoples R ChinaEast China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
Zhou, Taoye
Long, Lingbo
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
Long, Lingbo
She, Qiannan
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecorestorat, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China