Parameter estimation for multivariate diffusion systems

被引:6
|
作者
Varughese, Melvin M. [1 ]
机构
[1] Univ Cape Town, Dept Stat Sci, ZA-7707 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
Diffusion process; Fokker-Planck equation; Cumulant truncation procedure; Saddlepoint approximation; Markov Chain Monte Carlo; MAXIMUM-LIKELIHOOD-ESTIMATION; STOCHASTIC DIFFERENTIAL-EQUATIONS; SADDLEPOINT APPROXIMATIONS; MARKOV-PROCESSES; TIME; EXPANSIONS; INFERENCE; MODELS;
D O I
10.1016/j.csda.2012.07.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion processes are widely used for modelling real-world phenomena. Except for select cases however, analytical expressions do not exist for a diffusion process' transitional probabilities. It is proposed that the cumulant truncation procedure can be applied to predict the evolution of the cumulants of the system. These predictions may be subsequently used within the saddlepoint procedure to approximate the transitional probabilities. An approximation to the likelihood of the diffusion system is then easily derived. The method is applicable for a wide range of diffusion systems - including multivariate, irreducible diffusion systems that existing estimation schemes struggle with. Not only is the accuracy of the saddlepoint comparable with the Hermite expansion - a popular approximation to a diffusion system's transitional density - it also appears to be less susceptible to increasing lags between successive samplings of the diffusion process. Furthermore, the saddlepoint is more stable in regions of the parameter space that are far from the maximum likelihood estimates. Hence, the saddlepoint method can be naturally incorporated within a Markov Chain Monte Carlo (MCMC) routine in order to provide reliable estimates and credibility intervals of the diffusion model's parameters. The method is applied to fit the Heston model to daily observations of the S&P 500 and VIX indices from December 2009 to November 2010. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 50 条
  • [31] USING MULTIVARIATE ANALYSIS OF COVARIANCE IN GENETIC PARAMETER ESTIMATION
    Eltas, Omer
    Topal, Mehmet
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (02): : 2015 - 2024
  • [32] PARAMETER ESTIMATION IN MULTIVARIATE STOCHASTIC DIFFERENCE EQUATIONS - REPLY
    KASHYAP, RL
    NASBURG, RE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (01) : 142 - 143
  • [34] Parameter estimation in dynamic systems
    Stortelder, WJH
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (2-3) : 135 - 142
  • [35] PARAMETER ESTIMATION FOR MULTIVARIABLE SYSTEMS
    GUPTA, RD
    FAIRMAN, FW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (05) : 546 - 549
  • [36] PARAMETER ESTIMATION IN SYSTEMS WITH FEEDBACK
    ZARUDNEV, II
    SLIVNYAK, IM
    AUTOMATION AND REMOTE CONTROL, 1970, (09) : 1417 - &
  • [37] Parameter estimation in biofilter systems
    Alonso, C
    Zhu, XQ
    Suidan, MT
    Kim, BR
    Kim, BJ
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (11) : 2318 - 2323
  • [38] Parameter estimation in dynamic systems
    Schittkowski, K
    PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 : 183 - 204
  • [39] Parameter Estimation in Switched Systems
    Borchersen, Anders Bech
    Larsen, Jesper Abildgaard
    Wisniewski, Rafael
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1793 - 1798
  • [40] Parameter estimation for Fisher-Snedecor diffusion
    Avram, F.
    Leonenko, N. N.
    Suvak, N.
    STATISTICS, 2011, 45 (01) : 27 - 42