CYCLIC CODES OVER RINGS OF MATRICES

被引:1
|
作者
Dinh, Hai Quang [1 ]
Gaur, Atul [2 ]
Kumar, Pratyush [3 ]
Singh, Manoj Kumar [4 ]
Singh, Abhay Kumar [5 ]
机构
[1] Kent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
[2] Univ Delhi DU, Dept Math, Delhi 110007, India
[3] Lovely Profess Univ, Sch Chem Engn & Phys Sci, Dept Math, Jalandhar 144001, India
[4] Lovely Profess Univ, Sch Chem Engn & Phys Sci, Dept Math, Jalandhar 144001, India
[5] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, India
关键词
Non-commutative ring; matrix ring; cyclic codes; optimal codes; linear codes; SELF-DUAL CODES; CONSTRUCTION; F-2+UF(2); PREPARATA; KERDOCK;
D O I
10.3934/amc.2022073
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider the ring of matrices A of order 2 over the ring F-2[u]/(u(k)), where u is an indeterminate with u(k) = 0, i.e. A = M-2(F-2[u]/(u(k))). We derive the structure theorem for cyclic codes of odd length n over the ring A with the help of isometry map from A to F-4[u, v]/(u(k), v(2), uv- vu), where v is an indeterminate satisfying v(2) = 0 and uv = vu. We define a map theta which takes the linear codes of odd length n over A to linear codes of even length 2kn over F-4. We also define a weight on the ring A which is an extension of the weight defined over the ring M-2(F-2). An example is also given as applications to construct the linear codes of odd length n over A.
引用
收藏
页码:1100 / 1122
页数:23
相关论文
共 50 条
  • [41] Skew quasi-cyclic codes over Galois rings
    Maheshanand Bhaintwal
    [J]. Designs, Codes and Cryptography, 2012, 62 : 85 - 101
  • [42] Weight distribution of double cyclic codes over Galois rings
    Gao, Jian
    Meng, Xiangrui
    Fu, Fang-Wei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2529 - 2549
  • [43] Studies on Two Classes of Skew Cyclic Codes Over Rings
    Li, Yan
    Li, Xiuli
    [J]. INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 1, 2017, 454 : 95 - 101
  • [44] Weight distribution of double cyclic codes over Galois rings
    Jian Gao
    Xiangrui Meng
    Fang-Wei Fu
    [J]. Designs, Codes and Cryptography, 2022, 90 : 2529 - 2549
  • [45] Skew quasi-cyclic codes over Galois rings
    Bhaintwal, Maheshanand
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) : 85 - 101
  • [46] Enumeration and construction of additive cyclic codes over Galois rings
    Cao, Yonglin
    Gao, Jian
    Fu, Fang-Wei
    Cao, Yuan
    [J]. DISCRETE MATHEMATICS, 2015, 338 (06) : 922 - 937
  • [47] Affine invariant extended cyclic codes over Galois rings
    Dey, BK
    Rajan, BS
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 160 - 160
  • [48] Linear codes and rings of matrices
    Greferath, M
    Schmidt, SE
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 160 - 169
  • [49] QEC and EAQEC codes from cyclic codes over non-chain rings
    Zhang, Xiaoyan
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (12)
  • [50] On the Construction of Quantum and LCD Codes from Cyclic Codes over the Finite Commutative Rings
    Ali, Shakir
    Alali, Amal S.
    Jeelani, Mohammad
    Kurulay, Muhammet
    oeztas, Elif Segah
    Sharma, Pushpendra
    [J]. AXIOMS, 2023, 12 (04)