A DATA-INDEPENDENT DISTANCE TO INFEASIBILITY FOR LINEAR CONIC SYSTEMS

被引:1
|
作者
Pena, Javier [1 ]
Roshchina, Vera [2 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
condition number; conic programming; distance to infeasibility; convex duality; CONDITION NUMBER; COMPLEXITY THEORY; ALGORITHM; GEOMETRY; PROJECTION;
D O I
10.1137/18M1189464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We offer a unified treatment of distinct measures of well-posedness for homogeneous conic systems. To that end, we introduce a distance to infeasibility based entirely on geometric considerations of the elements defining the conic system. Our approach sheds new light on and connects several well-known condition measures for conic systems, including Renegar's distance to infeasibility, the Grassmannian condition measure, a measure of the most interior solution, and other geometric measures of symmetry and of depth of the conic system.
引用
收藏
页码:1049 / 1066
页数:18
相关论文
共 50 条
  • [21] Multiplexed MS/MS for improved data-independent acquisition
    Jarrett D Egertson
    Andreas Kuehn
    Gennifer E Merrihew
    Nicholas W Bateman
    Brendan X MacLean
    Ying S Ting
    Jesse D Canterbury
    Donald M Marsh
    Markus Kellmann
    Vlad Zabrouskov
    Christine C Wu
    Michael J MacCoss
    [J]. Nature Methods, 2013, 10 : 744 - 746
  • [22] Optimizing Linear Ion-Trap Data-Independent Acquisition toward Single-Cell Proteomics
    Phlairaharn, Teeradon
    Ye, Zilu
    Krismer, Elena
    Pedersen, Anna-Kathrine
    Pietzner, Maik
    Olsen, Jesper V.
    Schoof, Erwin M.
    Searle, Brian C.
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (26) : 9881 - 9891
  • [23] Use of Linear Ion Traps in Data-Independent Acquisition Methods Benefits Low-Input Proteomics
    Borras, Eva
    Pastor, Olga
    Sabido, Eduard
    [J]. ANALYTICAL CHEMISTRY, 2021, 93 (34) : 11649 - 11653
  • [24] Stabilizing Queuing Networks With Model Data-Independent Control
    Xie, Qian
    Jin, Li
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2022, 9 (03): : 1317 - 1326
  • [25] Data-independent neighborhood functions and strict local optima
    Armstrong, DE
    Jacobson, SH
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 146 (03) : 233 - 243
  • [26] Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
    Pegg, Cassandra L.
    Phung, Toan K.
    Caboche, Christopher H.
    Niamsuphap, Suchada
    Bern, Marshall
    Howell, Kate
    Schulz, Benjamin L.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2021, 20
  • [27] Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma
    van der Laan, Tom
    Boom, Isabelle
    Maliepaard, Joshua
    Dubbelman, Anne-Charlotte
    Harms, Amy C.
    Hankemeier, Thomas
    [J]. METABOLITES, 2020, 10 (12) : 1 - 14
  • [28] Specter: linear deconvolution as a new paradigm for targeted analysis of data-independent acquisition mass spectrometry proteomics
    Peckner, Ryan
    Myers, Samuel A.
    Egertson, Jarrett D.
    Johnson, Richard S.
    Carr, Steven A.
    MacCoss, Michael J.
    Jaffe, Jacob D.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2017, 16 (08) : S45 - S45
  • [29] DIAmeter: matching peptides to data-independent acquisition mass spectrometry data
    Lu, Yang Young
    Bilmes, Jeff
    Rodriguez-Mias, Ricard A.
    Villen, Judit
    Noble, William Stafford
    [J]. BIOINFORMATICS, 2021, 37 : I434 - I442
  • [30] DIID - DATA-INDEPENDENT INTERFACE FOR DATABASES - THE AI PERSPECTIVE
    OBERMEIER, KK
    DEHILSTER, D
    [J]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1985, 548 : 220 - 226