A New Study of Parikh Matrices Restricted to Terms

被引:2
|
作者
Chern, Zi Jing [1 ]
Subramanian, K. G. [2 ]
Ahmad, Azhana [1 ]
Teh, Wen Chean [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Usm 11800, Malaysia
[2] Liverpool Hope Univ, Dept Math & Comp Sci, Fac Sci, Liverpool L16 9JD, Merseyside, England
关键词
Parikh matrices; terms; M-equivalence; distance; self-shuffle operator; INJECTIVITY; EQUIVALENCE; CONJECTURE; EXTENSION; WORDS;
D O I
10.1142/S0129054120500306
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Parikh matrices as an extension of Parikh vectors are useful tools in arithmetizing words by numbers. This paper presents a further study of Parikh matrices by restricting the corresponding words to terms formed over a signature. Some M-equivalence preserving rewriting rules for such terms are introduced. A characterization of terms that are only M-equivalent to themselves is studied for binary signatures. Graphs associated to the equivalence classes of M-equivalent terms are studied with respect to graph distance. Finally, the preservation of M-equivalence under the term self-shuffle operator is studied.
引用
收藏
页码:621 / 638
页数:18
相关论文
共 50 条
  • [41] On M-Equivalence and Strong M-Equivalence for Parikh Matrices
    Poovanandran, Ghajendran
    Teh, Wen Chean
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (01) : 123 - 137
  • [42] Two-dimensional picture arrays and Parikh q-matrices
    Bera, Somnath
    Mahalingam, Kalpana
    Pan, Linqiang
    Subramanian, K. G.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS, 2018, 1132
  • [43] A New Operator over Parikh Languages
    Atanasiu, Adrian
    Teh, Wen Chean
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2016, 27 (06) : 757 - 769
  • [44] Restricted lonesum matrices
    Benyi, Beata
    ANNALES MATHEMATICAE ET INFORMATICAE, 2018, 49 : 43 - 54
  • [45] q-Parikh matrices and q-deformed binomial coefficients of words
    Renard, Antoine
    Rigo, Michel
    Whiteland, Markus A.
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [46] Algebraic Properties of Parikh q-Matrices on Two-Dimensional Words
    Janaki, K.
    Arulprakasam, R.
    Paramasivan, Meenakshi
    Dare, V. Rajkumar
    COMBINATORIAL IMAGE ANALYSIS, IWCIA 2022, 2023, 13348 : 171 - 188
  • [47] On strongly M-unambiguous prints and Serbanuta's conjecture for Parikh matrices
    Teh, Wen Chean
    Atanasiu, Adrian
    Poovanandran, Ghajendran
    THEORETICAL COMPUTER SCIENCE, 2018, 719 : 86 - 93
  • [48] Parikh motivated study on repetitions in words
    Atanasiu, Adrian
    Poovanandran, Ghajendran
    Teh, Wen Chean
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (04): : 325 - 340
  • [49] Pascal Matrices and Restricted Words
    Janjic, Milan
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (05)
  • [50] ENUMERATION OF SOME RESTRICTED MATRICES
    ROGERS, DG
    DISCRETE MATHEMATICS, 1979, 27 (01) : 81 - 91