Na3V2(PO4)3: an advanced cathode for sodium-ion batteries

被引:247
|
作者
Zhang, Xianghua [1 ]
Rui, Xianhong [1 ,2 ,3 ]
Chen, Dong [1 ]
Tan, Huiteng [1 ]
Yang, Dan [1 ]
Huang, Shaoming [1 ]
Yu, Yan [2 ,4 ]
机构
[1] Guangdong Univ Technol, Guangzhou Key Lab Low Dimens Mat & Energy Storage, Collaborat Innovat Ctr Adv Energy Mat, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Sci & Technol China, Chinese Acad Sci, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[3] State Key Lab Vanadium & Titanium Resources, Comprehens Utilizat, Panzhihua 617000, Peoples R China
[4] Chinese Acad Sci, Dalian Natl Lab Clean Energy DNL, Dalian 116023, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-COATED NA3V2(PO4)(3); HIGH-PERFORMANCE ANODE; ENHANCED ELECTROCHEMICAL PERFORMANCE; SUPERIOR RATE CAPABILITY; NASICON STRUCTURED NA3V2(PO4)(3); EXCELLENT CYCLING STABILITY; NA-STORAGE CATHODE; HARD-CARBON; LITHIUM-ION; LONG-LIFE;
D O I
10.1039/c8nr09391a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) are considered to be the most promising electrochemical energy storage devices for large-scale grid and electric vehicle applications due to the advantages of resource abundance and cost-effectiveness. The electrochemical performance of SIBs largely relies on the intrinsic chemical properties of the cathodic materials. Among the various cathodes, rhombohedral Na3V2(PO4)(3) (NVP), a typical sodium super ionic conductor (NASICON) compound, is very popular owing to its high Na+ mobility and firm structural stability. However, the relatively low electronic conductivity makes the theoretical capacity of NVP cathodes unviable even at low rates, not to mention the high rate of charging/discharging. This is a major drawback of NVPs, limiting their future large-scale applications. Herein, a comprehensive review of the recent progresses made in NVP fabrication has been presented, mainly including the strategies of developing NVP/carbon hybrid materials and elemental doping to improve the electronic conductivity of NVP cathodes and designing 3D porous architectures to enhance Na-ion transportation. Moreover, the application of NVP cathodic materials in Na-ion full batteries is summarized, too. Finally, some remarks are made on the challenges and perspectives for the future development of NVP cathodes.
引用
收藏
页码:2556 / 2576
页数:21
相关论文
共 50 条
  • [31] Green and Scalable Synthesis of Na3V2(PO4)3 Cathode and the Study on the Failure Mechanism of Sodium-Ion Batteries
    Tang, Xin
    Ding, Haiyang
    Teng, Jinhan
    Zhao, Haomiao
    Li, Jing
    Zhang, Kaibo
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (16) : 8443 - 8454
  • [32] Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries
    Samigullin, Ruslan R.
    Zakharkin, Maxim V.
    Drozhzhin, Oleg A.
    Antipov, Evgeny V.
    ENERGIES, 2023, 16 (07)
  • [33] Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries
    Liang, Kang
    Wu, Daxiong
    Ren, Yurong
    Huang, Xiaobing
    Ma, Jianmin
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [34] Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone
    Zhu, Weikai
    Liang, Kang
    Ren, Yurong
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17192 - 17201
  • [35] Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries
    Kang Liang
    Daxiong Wu
    Yurong Ren
    Xiaobing Huang
    Jianmin Ma
    Chinese Chemical Letters, 2023, 34 (06) : 37 - 47
  • [36] The Synthesis of Porous Na3V2(PO4)3 for Sodium-Ion Storage
    Xiong, Hailong
    Qi, Chunyu
    Lv, Shiquan
    Zhang, Ling
    Qiao, Zhen-An
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (60) : 14790 - 14799
  • [37] A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries
    Song, Weixin
    Cao, Xiaoyu
    Wu, Zhengping
    Chen, Jun
    Huangfu, Kaili
    Wang, Xiaowen
    Huang, Yaliang
    Ji, Xiaobo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (33) : 17681 - 17687
  • [38] Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries
    Gu, Erlong
    Xu, Jingyi
    Du, Yichen
    Ge, Xufang
    Zhu, Xiaoshu
    Bao, Jianchun
    Zhou, Xiaosi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 240 - 247
  • [39] Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries
    Chu, Zhaolian
    Yue, Caibo
    CERAMICS INTERNATIONAL, 2016, 42 (01) : 820 - 827
  • [40] Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries
    Wenhao Zhu
    Qianlun Mao
    Yuexin Jia
    Jiangfeng Ni
    Lijun Gao
    Journal of Electronic Materials, 2023, 52 : 836 - 846