Etching effects of ethanol on multi-walled carbon nanotubes

被引:57
|
作者
Yu, GJ
Gong, JL
Wang, S
Zhu, DZ
He, SX
Zhu, ZY
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotubes; etching; electron microscopy;
D O I
10.1016/j.carbon.2005.10.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The morphology and microstructure of multi-walled carbon nanotubes (MWCNTs) were modified using ethanol as a mild gas reactant. The etching by OH radicals and deposition of C radicals on the carbon nanotubes were considered to be responsible for the modification of the MWCNT structures and the formation of new carbon nanostructures. The effects of etching and deposition on the MWCNTs were confirmed by using methanol as another gas reactant; this molecule has a higher ratio of hydroxyl radicals to carbon atoms than ethanol. In addition, water vapor, containing no carbon atoms in the molecule, was also applied to etch the MWCNTs as a weak oxidant which resulted in stronger etching effects on the MWCNTs than methanol and ethanol. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1218 / 1224
页数:7
相关论文
共 50 条
  • [41] Wave characteristics of multi-walled carbon nanotubes
    Mitra, Mira
    Gopalakrishnan, S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 27 (1-2): : 125 - 136
  • [42] The oxidation kinetics of multi-walled carbon nanotubes
    Singh, Ankit Kumar
    Hou, Xin-mei
    Chou, Kuo-Chih
    CORROSION SCIENCE, 2010, 52 (05) : 1771 - 1776
  • [43] Chemical modifications of multi-walled carbon nanotubes
    Williamson, Jonathan
    Gaquere, Anne C.
    Khan, Farooq A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [44] Ammonia adsorption on multi-walled carbon nanotubes
    Kombarakkaran, J.
    Clewett, C. F. M.
    Pietrass, T.
    CHEMICAL PHYSICS LETTERS, 2007, 441 (4-6) : 282 - 285
  • [45] Influences of multi-walled carbon nanotubes incorporated into
    Liu, G. Q.
    Hou, M. . Y.
    Wang, S. Q.
    MATERIALS PHYSICS AND MECHANICS, 2023, 51 (03): : 66 - 74
  • [46] Transverse elasticity of multi-walled carbon nanotubes
    Dai, X. B.
    Merlitz, H.
    Wu, C. X.
    EUROPEAN PHYSICAL JOURNAL B, 2006, 54 (01): : 109 - 112
  • [47] Microbial degradation of multi-walled carbon nanotubes
    Zhang, Liwen
    Huang, Qingguo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [48] Arkema Graphistrength® Multi-Walled Carbon Nanotubes
    McAndrew, T. Page
    Laurent, Pierre
    Havel, Mickael
    Roger, Chris
    NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS: MATERIALS, FABRICATION, PARTICLES, AND CHARACTERIZATION, 2008, : 47 - +
  • [49] Piezoelectric Response of Multi-Walled Carbon Nanotubes
    Il'ina, Marina V.
    Il'in, Oleg I.
    Blinov, Yuriy F.
    Konshin, Alexey A.
    Konoplev, Boris G.
    Ageev, Oleg A.
    MATERIALS, 2018, 11 (04):
  • [50] Oxidation of dopamine on multi-walled carbon nanotubes
    Nikos G. Tsierkezos
    Uwe Ritter
    Journal of Solid State Electrochemistry, 2012, 16 : 2217 - 2226