Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating

被引:11
|
作者
Agarwal, Rahul [1 ]
Krook, Nadia M. [1 ]
Ren, Ming-Liang [1 ]
Tan, Liang Z. [2 ]
Liu, Wenjing [1 ]
Rappe, Andrew M. [2 ]
Agarwal, Ritesh [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Nanostructures; nanowire; nanobelt; anion exchange; atomic template; CdS; Wurtzite; Zincblende; chemical transformation; HALIDE PEROVSKITES CSPBX3; CATION-EXCHANGE; CADMIUM-SULFIDE; CHEMICAL TRANSFORMATION; CHALCOGENIDE NANOWIRES; OPTICAL-PROPERTIES; CDSE NANOCRYSTALS; RAMAN-SCATTERING; CONVERSION; NANOTUBES;
D O I
10.1021/acs.nanolett.7b04424
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlled chemical transformation of nano structures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.
引用
收藏
页码:1620 / 1627
页数:8
相关论文
共 50 条
  • [41] LATTICE DISTORTIONS AROUND ATOMIC SUBSTITUTIONS IN II-VI ALLOYS.
    Balzarotti, A.
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 146 (1-2): : 150 - 175
  • [42] End-Functionalized Semiconducting Polymers as Reagents in the Synthesis of Hybrid II-VI Nanoparticles
    Mazzio, Katherine A.
    Prasad, Shyamal K. K.
    Okamoto, Ken
    Hodgkiss, Justin M.
    Luscombe, Christine K.
    LANGMUIR, 2018, 34 (33) : 9692 - 9700
  • [43] Epitaxial growth of II-VI compound semiconductors by atomic layer epitaxy
    Hsu, CT
    THIN SOLID FILMS, 1998, 335 (1-2) : 284 - 291
  • [44] LATTICE-DISTORTIONS AROUND ATOMIC SUBSTITUTIONS IN II-VI ALLOYS
    BALZAROTTI, A
    PHYSICA B & C, 1987, 146 (1-2): : 150 - 175
  • [45] Hybrid organic/II-VI quantum dots: highly luminescent nanostructures for bioimaging
    Farias, Patricia M.
    Santos, Beate S.
    Chaves, Claudilene R.
    Figueiredo, Regina C. B. Q.
    Ferreira, Ricardo C.
    Fontes, Adriana
    MOLECULAR PROBES FOR BIOMEDICAL APPLICATIONS II, 2008, 6867
  • [46] Electrooptical properties of II-VI semiconducting thin-films doped with isoelectronic impurities
    Kang, JS
    Park, SH
    Lee, SG
    Sohn, SH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 30 (03) : 600 - 607
  • [47] Effect of Structural Modification on the Quantum-Size Effect in II-VI Semiconducting Nanocrystals
    Viswanatha, Ranjani
    Sarma, D. D.
    CHEMISTRY-AN ASIAN JOURNAL, 2009, 4 (06) : 904 - 909
  • [48] A first-principles study of II-VI (II = Zn; VI = O, S, Se, Te) semiconductor nanostructures
    Azpiroz, Jon M.
    Infante, Ivan
    Lopez, Xabier
    Ugalde, Jesus M.
    De Angelis, Filippo
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (40) : 21453 - 21465
  • [49] Mechanisms of enhancement of light emission in nanostructures of II-VI compounds doped with manganese
    Godlewski, M.
    Yatsunenko, S.
    Ivanov, V. Yu.
    Drozdowicz-Tomsia, K.
    Goldys, E. M.
    Phillips, M. R.
    Klar, P. J.
    Heimbrodt, W.
    LOW TEMPERATURE PHYSICS, 2007, 33 (2-3) : 192 - 196
  • [50] Photocatalytic degradation of water pollutants using II-VI semiconducting catalysts: A comprehensive review
    Gupta, Tripti
    Chauhan, R. P.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06):