The thermodynamic effect of thermal energy storage on compressed air energy storage system

被引:69
|
作者
Zhang, Yuan [1 ,2 ]
Yang, Ke [1 ]
Li, Xuemei [1 ,2 ]
Xu, Jianzhong [1 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; CAES; Thermal energy storage; Thermodynamic analysis; Energy utilization;
D O I
10.1016/j.renene.2012.06.052
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the increasing penetration of renewable energy into energy market, it is urgent to solve the problem of fluctuations of renewable energy sources (RES). Energy storage technology is regarded as one method to cope with the unstable nature of RES. One of these technologies is compressed air energy storage (CAES), which is a modification of the basic gas turbine technology. Electric power supplied by CAES can meet peak-load requirement of electric utility systems. Because there is heat waste in the existing CAES systems during compression process, fossil fuels are used to improve the expansion work to generate peak power. In order to avoid the use of fuels and keep high efficiency of system, CAES system with thermal energy storage (TES) is designed to capture and reuse the compressed air heat. This paper uses a thermodynamic model of a CAES system with TES to analyze the effect of TES on system efficiency. Besides, this paper evaluates the influence of temperature and pressure on the utilization of heat in TES. Results show that even when power efficiency reaches maximum, there is still a proportion of thermal energy left in TES for other use. Meanwhile, the utilization of heat in TES can be affected by pressure in the air storage chamber. With appropriate selection of pressure limits, the utilization of compressed air heat can be optimized. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 50 条
  • [21] Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air
    Kantharaj, Bharath
    Garvey, Seamus
    Pimm, Andrew
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2015, 11 : 159 - 164
  • [22] A New Energy Storage System Coupled with Compressed Air and Pumped-Hydro Energy Storage and Related Thermodynamic Analysis
    Li C.
    He X.
    Tao F.
    Wang H.
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (04): : 40 - 49and71
  • [23] DESIGN OF A MODULAR SOLID-BASED THERMAL ENERGY STORAGE FOR A HYBRID COMPRESSED AIR ENERGY STORAGE SYSTEM
    Lakeh, Reza Baghaei
    Villazana, Ian C.
    Houssainy, Sammy
    Anderson, Kevin R.
    Kavehpour, H. Pirouz
    [J]. PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2016, VOL 2, 2016,
  • [24] Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection
    Gao, Ziyu
    Zhang, Xinjing
    Li, Xiaoyu
    Xu, Yujie
    Chen, Haisheng
    [J]. ENERGY, 2023, 284
  • [25] Thermodynamic and economic analysis of a novel compressed air energy storage system coupled with solar energy and liquid piston energy storage and release
    Zhang, Yufei
    Zhang, Wenlong
    Li, Ruixiong
    Wang, Huanran
    He, Xin
    Li, Xiangdong
    Du, Junyu
    Zhang, Xuanhao
    [J]. Energy, 2024, 311
  • [26] Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power
    Yang, Zhiwei
    Wang, Zhe
    Ran, Peng
    Li, Zheng
    Ni, Weidou
    [J]. APPLIED THERMAL ENGINEERING, 2014, 66 (1-2) : 519 - 527
  • [27] Compressed air energy storage
    不详
    [J]. BWK, 2010, 62 (04): : 27 - 27
  • [28] Design and Thermodynamic Investigation of a Waste Heat-Assisted Compressed Air Energy Storage System Integrating Thermal Energy Storage and Organic Rankine Cycle
    Fu, Wenyu
    Sun, Wenqiang
    Huo, Xiangyan
    [J]. ENERGY TECHNOLOGY, 2024, 12 (02)
  • [29] Thermodynamic analysis of an advanced adiabatic compressed air energy storage system integrated with a high-temperature thermal energy storage and an Organic Rankine Cycle
    Zhu, Jiahua
    Zhang, Yanan
    Yu, Boxu
    Liao, Zhirong
    Xu, Chao
    [J]. Journal of Energy Storage, 2024, 100
  • [30] Performance Analysis and Optimization of Compressed Air Energy Storage Integrated with Latent Thermal Energy Storage
    Yu, Xiaoli
    Dou, Wenbo
    Zhang, Zhiping
    Hong, Yan
    Qian, Gao
    Li, Zhi
    [J]. Energies, 2024, 17 (11)