MnO2 cathode materials with high reversible stability through Li intercalating for aqueous zinc ion battery

被引:7
|
作者
Ni, Zejuan [1 ]
Liang, Xiang [1 ]
Zhao, Limin [1 ]
Zhao, Hui [1 ]
Ge, Bo [1 ]
Li, Wenzhi [1 ]
机构
[1] Liaocheng Univ, Sch Mat Sci & Engn, Liaocheng 252059, Peoples R China
关键词
Aqueous zinc ion batteries; Li; -doped; Manganese oxide; N-Butyllithium; PRUSSIAN BLUE ANALOGS; EFFICIENT CATHODE; NANOSHEETS; CHALLENGE;
D O I
10.1016/j.ssi.2022.116049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese oxides have been paid attention to storage energy with low price, high safety and environmentally friendly. Nevertheless, poorly cycling stability and low structure stability restrict their appliance. The metal doping is a potential method to enhance their electrochemical performance. Herein, a new strategy was proposed to optimize the cycling stability and rate performance of the pristine MnO2 by the simple lithium doped. The Li -doped MnO2 (Li-MnO2) not only relieved the manganese dissolution during charge-discharge process but also introduced oxygen defects boosting the electrochemical kinetics of MnO2. The prepared composite delivers a reversible specific capacity of 185 mAh g-1 at 0.1 A g-1 and 88 mAh g-1 at 1 A g-1, maintaining 88% of its initial capacity after 1000 cycles. This work may provide some new ideas for improving the stability of manganese -based zinc-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System
    Alfaruqi, Muhammad H.
    Mathew, Vinod
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Baboo, Joseph P.
    Choi, Sun H.
    Kim, Jaekook
    CHEMISTRY OF MATERIALS, 2015, 27 (10) : 3609 - 3620
  • [42] Construction of MnO2 with oxygen defects as cathode material for aqueous zinc ion batteries
    Li, Qiaohui
    Cao, Zhixiang
    Wu, Aohua
    Zhang, Xinyue
    Zhang, Jiaqi
    Gu, Jiajie
    Song, Zhongcheng
    Mao, Wutao
    Bao, Keyan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (08) : 2927 - 2935
  • [43] Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries
    Su, Dawei
    Ahn, Hyo-Jun
    Wang, Guoxiu
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (15) : 4845 - 4850
  • [44] Highly Flexible K-Intercalated MnO2/Carbon Membrane for High-Performance Aqueous Zinc-Ion Battery Cathode
    Yang, Jie
    Yao, Ge
    Li, Zhiqiang
    Zhang, Yuhang
    Wei, Lingzhi
    Niu, Helin
    Chen, Qianwang
    Zheng, Fangcai
    SMALL, 2023, 19 (01)
  • [45] Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes
    Jiao, Yiding
    Kang, Liqun
    Berry-Gair, Jasper
    McColl, Kit
    Li, Jianwei
    Dong, Haobo
    Jiang, Hao
    Wang, Ryan
    Cora, Furio
    Brett, Dan J. L.
    He, Guanjie
    Parkin, Ivan P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (42) : 22075 - 22082
  • [46] An Artificial MnWO4 Cathode Electrolyte Interphase Enabling Enhanced Electrochemical Performance of δ-MnO2 Cathode for Aqueous Zinc Ion Battery
    Tian, Hao
    Zhang, Huanlin
    Zuo, You
    Ling, Lei
    Meng, Tengfei
    Zhang, Hang
    Sun, Xiaohong
    Cai, Shu
    MATERIALS, 2023, 16 (08)
  • [47] Simultaneous reversible tuning of H+ and Zn2+ coinsertion in MnO2 cathode for high-capacity aqueous Zn-ion battery
    Shang, Zhoutai
    Zhang, Hong
    Wang, Mingli
    Chen, Qianwang
    Lu, Ke
    NANOSCALE, 2022, 14 (16) : 6085 - 6093
  • [48] MnO2 nanowires modified reduced graphene oxide thick film cathode for aqueous zinc-ion prismatic battery
    Antony, M. Inigo
    Navaneeth, Punnakkal
    Vinod, M. Vyshnav
    Krishnendu, S. D.
    Babu, T. G. Satheesh
    Suneesh, P. V.
    JOURNAL OF ENERGY STORAGE, 2024, 103
  • [49] Transformed Akhtenskite MnO2 from Mn3O4 as Cathode for a Rechargeable Aqueous Zinc Ion Battery
    Wang, Lulu
    Cao, Xi
    Xu, Linghong
    Chen, Jitao
    Zheng, Junrong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16055 - 16063
  • [50] β-MnO2/three-dimensional graphene-carbon nanotube hybrids as cathode for aqueous zinc-ion battery
    Xin, Shenghai
    Dong, Xiaoping
    Jin, Duolong
    Yang, Liying
    Su, Dandan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968