NONLINEAR ELECTRON AND SPIN TRANSPORT IN SEMICONDUCTOR SUPERLATTICES

被引:10
|
作者
Bonilla, L. L. [1 ]
Barletti, L. [2 ]
Alvaro, M. [1 ]
机构
[1] Univ Carlos III Madrid, G Millan Inst Fluid Dynam Nanosci & Ind Math, Leganes 28911, Spain
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
quantum drift-diffusion equations; quantum BGK model; Chapman-Enskog method; propagation of pulses; modified Kane model; Rashba spin-orbit interaction; spin oscillator;
D O I
10.1137/080714312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear charge transport in strongly coupled semiconductor superlattices is described by Wigner-Poisson kinetic equations involving one or two minibands. Electron-electron collisions are treated within the Hartree approximation, whereas other inelastic collisions are described by a modified BGK (Bhatnaghar-Gross-Krook) model. The hyperbolic limit is such that the collision frequencies are of the same order as the Bloch frequencies due to the electric field, and the corresponding terms in the kinetic equation are dominant. In this limit, spatially nonlocal drift diffusion balance equations for the miniband populations and the electric field are derived by means of the Chapman-Enskog perturbation technique. For a lateral superlattice with spin-orbit interaction, electrons with spin up or down have different energies, and their corresponding drift-diffusion equations can be used to calculate spin-polarized currents and electron spin polarization. Numerical solutions show stable self-sustained oscillations of the current and the spin polarization through a voltage biased lateral superlattice thereby providing an example of superlattice spin oscillator.
引用
收藏
页码:494 / 513
页数:20
相关论文
共 50 条
  • [1] Nonlinear Electron and Spin Transport in Semiconductor Superlattices
    Bonilla, L. L.
    Barletti, L.
    Alvaro, M.
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 141 - +
  • [2] Nonlinear electron transport in semiconductor superlattices in transverse magnetic field
    Shchamkhalova, BS
    Suris, RA
    [J]. PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 1998, 9-10 : 43 - 53
  • [3] Electron transport in semiconductor superlattices
    Ben Abdallah, N
    Degond, P
    Mellet, A
    Poupaud, F
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2003, 61 (01) : 161 - 192
  • [4] NONLINEAR ELECTRONIC TRANSPORT IN SEMICONDUCTOR SUPERLATTICES
    Bonilla, L. L.
    Barletti, L.
    Escobedo, R.
    Alvaro, M.
    [J]. APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY II, 2007, 75 : 184 - +
  • [5] Ballistic electron transport in semiconductor superlattices
    Strasser, G
    Rauch, C
    Kempa, K
    Gornik, E
    [J]. 1997 IEEE INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS, 1998, : 267 - 270
  • [6] Ballistic electron transport in semiconductor superlattices
    Strasser, G
    Rauch, C
    Kempa, K
    Gornik, E
    [J]. COMPOUND SEMICONDUCTORS 1997, 1998, 156 : 267 - 270
  • [7] Spin transport in diluted magnetic semiconductor superlattices
    Béjar, M
    Sánchez, D
    Platero, G
    MacDonald, AH
    [J]. RECENT TRENDS IN THEORY OF PHYSICAL PHENOMENA IN HIGH MAGNETIC FIELDS, 2003, 106 : 167 - 181
  • [8] Semiconductor superlattices: a model system for nonlinear transport
    Wacker, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 357 (01): : 1 - 111
  • [9] Bloch oscillations and nonlinear transport in semiconductor superlattices
    Renk, KF
    Schomburg, E
    Ignatov, AA
    Grenzer, J
    Winnerl, S
    Hofbeck, K
    [J]. PHYSICA B, 1998, 244 : 196 - 200
  • [10] Ballistic and dissipative electron transport in semiconductor superlattices
    Strasser, G
    Rauch, C
    Unterrainer, K
    Boxleitner, W
    Gornik, E
    [J]. PHYSICA E, 1998, 3 (1-3): : 152 - 157