Scale-based clustering using the radial basis function network

被引:62
|
作者
Chakravarthy, SV
Ghosh, J
机构
[1] Department of Electrical and Computer Engineering, University of Texas, Austin
来源
基金
美国国家科学基金会;
关键词
D O I
10.1109/72.536318
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows how scale-based clustering can be done using the radial basis function (RBF) network (RBFN), with the RBF width as the scale parameter and a dummy target as the desired output, The technique suggests the ''right'' scale at which the given data set should be clustered, thereby providing a solution to the problem of determining the number of RBF units and the widths required to get a good network solution, The network compares favorably with other standard techniques on benchmark clustering examples, Properties that are required of non-Gaussian basis functions, if they are to serve in alternative clustering networks, are identified, This work, on the whole, points out an important role played by the width parameter in RBFN, when observed over several scales, and provides a fundamental link to the scale space theory developed in computational vision.
引用
收藏
页码:1250 / 1261
页数:12
相关论文
共 50 条
  • [32] Function approximation based energy detection in cognitive radio using radial basis function network
    Dey, Barnali
    Hossain, A.
    Bhattacharjee, A.
    Dey, Rajeeb
    Bera, R.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2017, 23 (03): : 393 - 403
  • [33] Radial basis function network using Lambert–Kaniadakis Wκ function
    Nascimento, Hitalo Joseferson Batista
    Sousa, Paulo Regis Menezes
    da Silva, José Leonardo Esteves
    [J]. Communications in Nonlinear Science and Numerical Simulation, 2025, 142
  • [34] Face recognition based on radial basis function neural networks using subtractive clustering algorithm
    Dang, Jianwu
    Wang, Yangping
    Zhao, Shuxu
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 728 - 728
  • [35] Identification of Network Traffic Based on Radial Basis Function Neural Network
    Xu, Yabin
    Zheng, Jingang
    [J]. INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 173 - 179
  • [36] Using radial basis function network based on project pursuit to forecast reference evapotranspiration
    Hu, Qing-Fang
    Shang, Song-Hao
    Wen, Shou-Guang
    Meng, Bao-Quan
    [J]. Shuili Xuebao/Journal of Hydraulic Engineering, 2006, 37 (09): : 1151 - 1154
  • [37] Sales Forecasting Using an Evolutionary Algorithm Based Radial Basis Function Neural Network
    Kuo, R. J.
    Hu, Tung-Lai
    Chen, Zhen-Yao
    [J]. INFORMATION SYSTEMS: MODELING, DEVELOPMENT, AND INTEGRATION: THIRD INTERNATIONAL UNITED INFORMATION SYSTEMS CONFERENCE, UNISCON 2009, 2009, 20 : 65 - +
  • [38] Topology optimization using hyper radial basis function network
    Apte, Aditya P.
    Wang, Bo Ping
    [J]. AIAA JOURNAL, 2008, 46 (09) : 2211 - 2218
  • [39] Prediction of VLE data using radial basis function network
    Ganguly, S
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (10) : 1445 - 1454
  • [40] Nonlinear image restoration using a radial basis function network
    Icho, Keiji
    Liguni, Youji
    Maeda, Hajime
    [J]. Eurasip Journal on Applied Signal Processing, 2004, 2004 (16): : 2441 - 2450